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QUANTITATIVE RAY METHODS FOR SCATTERING OF SOUND BY
SPHERICAL SHELLS

Abstract
by Steven Gregory Kargl, Ph. D.
Washington State University
August 1990

Chair: Philip L. Marston

The application of ray methods to the scattering of high-frequency plane waves
from evacuated ¢lastic spherical shells is investigated. The investigation of ray methods for
spherical shells is a precursor to the application of such methods to shells having more
complicated shapes. The scattered pressure in the farfield of the shell is
Dsc = pi(alrZrf(B)exp(ikr) where p; is the plane wave amplitude. The outer radius of the
shell is @, h = a - b is the shell's thickness, and r is the distance to an observation point.
Ray models are developed to synthesize the form function f(8, ka) where k is the
wavenumber of the incident wave and © is the scattering angle. The forward scattering
amplitude, (8 = 0), is related to the extinction cross section, G,, by the optical theorem. If
the absorption by the scatterer is negligible, then G is equal to the total scattering cross
section O, A ray synthesis partitions f(8 = 0) into a component for ordinary forward
diffraction about the shell, fzp, and contributions from surface guided elastic waves. For
high-frequency scattering, the relevant surface guided elastic waves are leaky Lamb waves.
A similar ray synthesis of the backscattering amplitude f{0 = &) contains a specular
reflection component, f;;,(6 = ), and leaky Lamb wave contributions. A generalization of
thz geometrical theory of diffraction is employed to synthesize fi(9 = 0, ka) and

fi(0 =&, ka) for the Ith leaky Lamb wave contribution. The syntheses for forward and

backwards scattering correctly describe the leaky Lamb wave contributions and are




expressible in a Fabry-Perot resonator form. While the ray description uf backscattering
ordinarily accurately reproduces exact conputations and experiments with tone burst,
certain anomalies are discussed. A ray synthesis of f;, demorstrates a significant
longitudinal resonance effect when kzh = ni, n =1, 2, ..., where sy, = 0y/cy, is the
longitudinal wavenumber within the shell. The analysis of fsp is for an elastic material
with vanishing shear velocity. The relevant range of ka is 7 < ka < 100. The chell is
surrounded by water and is composed of 440c stainless sieel with i ner-to-outer radii ratio

b/a = 0.838.
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Chapter 1

Introduction

1.1 Review of the exact partial wave series for the form function

The application of acoustic ray methods to scattering problems can provide a simple
understanding of the physical interaction of an incident pressure wave and a scatterer,
When a scatterer has an arbitrary shape, direct solution of the appropriate boundary value
problem is not usually possible. While numerical solutions can be performed for a scatterer
of known composition and shape, physical insight into the underlying interaction between
an incident wave and a scatterer is often obfuscated. Ray methods may be directly applied

to describe the scattering from an object of arbitrary shape and the physical mechanisms

involved in the scattering process may easily be identified and understood. When
developing new ray techni:jues, it is advantageous to test these techniques by comparison
to a canonical prohlem where an exact solution is known. The comparison of a ray model
with an exact solution should allow one to identify regions where the simpie ray model is
useful. This diséenation investigates novel ray techrijues, based on an elastic

generalization o

=
o
=
ue
[le}]
QD
3
3
Lol
kY
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i
e

ory of diffraction,!2 which describe the forward and
backwards scattering from evacuated elastic spherical shells, It is anticipated that these new
ray techniques may be easily generalized to elastic objects with smooth convex shapes.
Before developing quantitative ray techniques for the scattering of a plane wave
from a submerged evacuated elastic spherical shell, it is appropriate to review the exact
solution to this canonical problem. A plane wave in the surrounding water propagates in
the positive z-direction and is incident on an elastic spherical shell situated at the origin of a

coordinate system. The physical pararaeters that describe the shell are the inner-to-outer

radii ratio b/a, the longitudinal sound speed ¢z, the shear sound speed ¢, and the density




Pe. The parameters for water are the speed of sound ¢ and density p. After scattering, the
total pressure in the water is p = pinc + Psc Where pinc = piexp(ikz) is the incident plane
wave and py, is the scattered pressured. The pressure amplitude of p;y, is p; and k = 27t/A
is the wavenumber of pj, in water where A is the wavelength. The harmonic time
dependence, exp(—iwt), has been suppressed and o is the angular frequency. Using
elasticity theory, Goodman and Stern derived an exact expression for the steady-staie
pressure as a partial wave series.3# Their analysis considered an elastic spherical shell

with a fluid interior which gave an expression similar to (see Eqs. (4a) and (6} of Ref. 3)

Bka) () !
D M (KOIPA(os®). 1)

p=p, Y, i"@n+ Dij,ko) +

n=0
where j,, and h,, are spherical Bessel and Eankel functions of the first kind and P, is a
Legendre polynomial. The functions B, and Dy, of the dimensionless size parameter ka are
6 x 6 determinants for a shell with a fluid interior and $ x 5 determinants for an evacuated
shell. The elements of these determinants are contained in Refs. 3 and 5. The first term in
the square brackets of Eq. (1) is the partial wave expansion of p;,. while the second term is

Psc- Inthe farfield of the elastic shell, ps. has the spherically diverging form!,>
Psc = P(A/2DEO)E , @

where the distance from the center of the shell to a distant observation point is  and f(0) is
the scattering form function or scattering amplitude. [In general, fis a function of the
spherical coordinates © and ¢, but the azimuthal symmetry of the spherical shell implies that
J1s independent of ¢.] Inspection of Eq. (2) reveals that any structure evident in | pg. | must

be a result of structure in | f(6) . An exact partial wave series representation of f(8) in the

farfield can be obtained from Eq. (1) by inttoducing the asymptotic form




hy — i Dexp(ikr)/kr, kr >> 1. Comparing the asymptotic form of the second term in

Eq. (1) with Eq. (2) gives

£(6) = z(z +1) (k; n(cos(8)) . 3)

It is well known that a partial wave series tends to be slowly converging for large ka (see
Secs. 2.5 and 4.3 and Appendix B of Chapter 3). Also, from inspection of Eq. (3), it is
evident that the underlying physical interaction of p;, with the scatterer is obfuscated. That
is, the complicated partial wave series representation of f is not amenable to a simple
physical interpretation of the scam‘:ring process.

In 1964, Hickling calculated the form function for backscattering, f(0 = x), from
iron and aluminum shells.6 The range of frequencies investigated corresponds to 0 < ka <
30 and the thickness of these shells varied from 0.05 < h/a <0.8. These form function
calculations contain complicated structure that was attributed to the elastic response of the
shell. Using Fourier transform techniques, Hickling then constructed the backscattered
pressure for short sine-wave tone bursts incident on the shells. [Equations (1) and (3)

describe the steady-state pressure. As discussed by Hickling, these equations may be used

to oive a Fourier svnthecic of the scattering ne hur 61 The comnuted backecattered
-~ o. v o vw - e Awad W ASMAAWLIALS WA SALW AFWAL S D AN W ue. I- ] A LA WS A A IR oL S AVe g TR s

nput
echoes contained a contribution due to a specular reflection. The specular reflection is
essentially the reflection of the incident burst from the outer surface of the shell. Also,
evident in the computed backscattered pressures are echoes that are delayed in time with
respect to the specular reflection. Hickling concluded that these observed echoes were due

to a flexural type wave within the shell that propagated around the shell re-radiating energy

into the water, Later, Diercks and Hickling gave experimental confirmation of the

computed echoes for backscattering from air- or water-filled aluminum shells.? Their




experiments involved several shells of various thicknesses and tone bursts of varying
duration with a frequency corresponding to ka = 20.

Subsequently, for high-frequency scattering the waves that circumnavigate within
an elastic shell have been classified as leaky Lamb waves.>8:? [Franz waves (creeping
waves) may be guided by the shell's surface. Franz waves circumnavigate the shell, but
for these types of waves the strain is primarily in the surrounding water and the waves are
usually heavily radiation damped.] Leaky Lamb waves may be thought of as a
generalization of Lamb waves in a flat elastic plate in vacuum!0:11 to the case of a fluid-
loaded curved plate. That is, the particle displacements for leaky Lamb waves in a fluid-
loaded shell of thickness % = a — b are analogous to the displacements associated with the
equivalent Lamb waves in a flat plate of the same thickness. Figure 1 illustrates the surface
displacements of the lowest antisynimetric and symmetric Lamb waves in a plate in
vacuum. While the amplitudes have been exaggerated, the values of kjh = ka(c/c;)(1 — b/a)
used for Fig. 1 are indicative of those encountered in the experiments of Ref. 5 and those

reviewed below.

1.2 Backscattering of short tone bursts from a shell

This section briefly reviews a ray model for backscattering from an elastic sphere or
shell and supporting experiments from Ref. 5. The scattering process is illusirated in Fig.
2. Ray diagrams similar to Fig. 2 are described in detail in Refs. 1, 2, and 5. The center
of a sphere or shell of outer radius a is located at the origin of a coordinate system. [The
inner radius of the shell is b and for the solid sphere » =0.] The total scattered pressure is
a superposition of a specular reflection from the region near point C’ and contributions due
to the circumnavigation of the Ith class of surface guided elastic waves around the shell.

For high-frequency scattering from elastic spheres, Rayleigh and Whisperiag Gallery

e




Fig.1 Surface displacements of the ap antisymmetric (a) and sp symmetric (b) Lamb wave

on a flat elastic plate of thickness / in vacuum. The dashed lines indicate the equilibrium

position for the surfaces of the flat plate.




waves 12 are the relevant surface guided elastic waves while (eaky Lamb waves3:89 are the
appropriate elastic waves for a shell. The incident plane wave excites a surface guided
elastic wave near point B in Fig. 2 that propagates about the shell radiating energy back into
the water. In the vicinity of point B’, the radiation is directed in the backscattered direction.
The points B and B’ are determined from the phase velocity trace matching condition
sin(B)) = c/c; where 8 is the local engle of incidence and ¢; is the surface guided elasiic
wave phase velocity.!25 The contribution to the form function due to the backscattering
of a surface guided elastic wave can be synthesized by considering the propagation path
length relative to an exit plane perpendicular to the z-axis through C’ in Fig. 2 and it can be
expressed in a Fabry-Perot resonator form!.2,12

-2(n - 6,)8 -2nf, i2nkac/c,
[~

LMY +e 1, @)

f=[- G‘.e
where 1;is a propagation phase delay. A complex coupling coefficient G describes the
efficiency of the coupling between the acoustic wavefield in water and the surface guidsd
elastic wave and J3; is the radiation damping parameter (in Np/rad) for the surface guided
elastic wave, A virtually exact expression for Gy is available for elastic spheres, but its

elevant parameters c)/c and f}; is non-trivial 2 Marston has

arameter an

dependence on the physically
developed an approximation for Gj that appears to give excellent results for elastic spheres
as well as shells (see Appendix I),1,13

In backscattering and near backscattering experiments described in Ref. 5,a 3 or 4
cycle sine-wave tone burst was incident on a sphere or shell with frequency w/2x. Figure
3a contains hydrophone output voltage versus time records for the backscattering of a burst
from a solid tungsten carbide sphere; while Figs. 3b - d are for the backscattering from a

hollow 440c stainless steel shell. The radius of the tungsten carbide sphere is ayc = 12.7

mm and the outer radius of the 44Cc stainless steel shell is asg = 19.05 mym while the shell's




Exit Plane
\b

Fig. 2 Ray diagram of a surface guided elastic wave contribution to backscattering from a
sphere (b = 0) or shell of inner-to-outer radii ratio b/a. The incident plane wave launches a
surface guided elastic wave on shell at B. The surface wave repeatedly circumnavigates the
sphere or shell continually shedding energy back into the water. At B', the radiated energy
is directed in the backscattered direction and appears to originate from a victual ring-like
source generated by rotating the point F; about the CC’ axis. The ring-like source
describes a toroidal wave front associated with the axial focusing or glory scatteving of the
surface wave. There are also contributions to backscattering associated with the specular

reflection and repeated internal reflections in the vicinity of £,
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Fig. 3 (Upper) Measured echoes for backscattering a 3 or 4-cyle sine-wave tone burst
from a solid tungsten carbide sphere (a) and an evacuated spherical shell composed of 440c
stainless steel (b - d). The specular reflection is labeled S. Rayleigh wave and lowest
antisymmetric and symmetric leaky Lamb waves echoes are denoted by R, ag, and 5o,
respectively. The tail immediately following the specular reflection in (b) and (¢) is

partially due to a longitudinal resonance. (Lower) Schematic of the experimenta! apparatus

employed for backscattering and near backscattering experiments.




thickness is h = ag; - - b = 3.09 mm. The size parameter, ka = wa/c, for each trace is as
follows: (a) 43.2, (b) 64.7, (c) 68.8, and (d) 36.4. In Fig. 3, the specular reflection {rom
the sphere or shell is labeled S. The Rayleigh wave contributions radiated from the.
tungsten carbide sphere are labeled by / = R while the lowest antisymmetric and symmetric
leaky Lamb wave contributions radiated from the shell are designated / = qg and o,
respectively. The identification of a specific surface guided elastic wave with an echo in
Fig. 3 is in accordance with their arrival time relative to the specular reflection. Detailed
analyses of backscattering records from a tungsten carbide sphere similar to Fig. 3a are
given in Refs. 12 and 14. Although, Figs. 3a and 3d are similar to the scattered pressure
computed by Hickling for an incident tone burst,5.15 the records in Figs. 3b and 3¢ contain
a feature not evident in Hickling's computations for shells. Inspection of Figs. 3b and 3¢
shows a long decaying pulse train immediately following the spe-ular reflection. This
decaying echo appears to be partially associated with the "ringing down" of a bulk,
longitudinal resonance that is investigated in detail in Chapier 4.

Distinct echo contributions are enumerated m =0, 1, ..., by considering the number
of complete circumnavigations associated with each echo. The backscattered pressure
amplitude for the meh distinct contribution from the Itk class of surface guided elastic wave

has the predicted form

-2(x - GI)BI - anBI .

Ipmll=lpiIAmla/2r, AmI=IG[|e O(u)—iBﬂJl(u)l, (5a,b)

where the fuactions Jo(u) and Jy(u), u = kayc':y, are cylindrical Bessel functions and 7y is
the local backscattering angle, y=n - 0. The normalization in Eq. (5a) is such that the
specular reflection from a large immovable rigid sphere is a wave whose amplitude is

I pi \(a/2r). For exact backscattering v =0 and | Jo(u) — ifry/1(w) | = 1. Figure 4 contains

the normalized on-axis amplitudes of the m = () echo for the [ = ag (solid iine) and s¢
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Fig. 4 Thenretical normaiized backscattering amplitudes for ag (solid line) and 5o (dashed
line) leaky Lamb wave echoes are compared with experimentzl data. The normalization is
with respect to a tungsten carbide sphere. The on-axis hydrophone distances for each data
set from the point C”in Fig. 2 is indicated. The data points were obtained from voltage

measurements on traces similar to those in Fig, 3.
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(dashed line) leaky Lamb waves. Since absolute pressure amplitude measurements could
not be achieved over the entire range of frequencies, both the theoretical and experimental
arnplitudes of the backscattering from the 440c stainless steel shell were normalized by the
specular reflection from the tungsten carbide sphere. The normalized measured Aqy are
given by (Vou/V swe)(@wcl fswe ass) where Vo and gy are the measured peak-to-peak
voltages of the (! = ap, sp) leaky Lamb wave echo and specular reflection from tungsten
carbide, respectively. The magnitude of the specular reflection form function for the
tungsten carbide sphere is | fowc | and the ratio of radii appears because of the difference in
the size of the sphere and shell used. [For the frequency range of interest | fowe | = (Pecr ~
Pc)(pecr + pc) = 0.969.] The agreement for ka < 44 between Eq. (5b) and experiment is
good, but for the ka > 44 the measured values deviate substantially from the predicted
amplitudes. One plausible cause for this discrepancy is the possibie excitation of the / = a;
and s} leaky Lamb waves for kg > 41 and 65, respectively. These waves were neglected in
the original analysis in Ref. 5. A second probable cause of the disagreement between the
measured and pr_edicted values is that the ag and sg echoes overlap in time for 50 < ka < 70
and the long decaying pulse train for ka > 65 may also interfere with the ag echo.

Equation (5b) indicates that A,,; should have a maximum for ¥ = 0 and it decreases
when the observation point is moved away from the axis (so that y= 0). The localization
of the pressure amplitude near the backward axis is a manifestation o the acoustical
glory.514 The m = 0 amplitude for the = ag leaky Lamb wave was studied to verify this
prediction. Again, the theory and measurements were normalized by the on-axis specular
reflection from a tungsten carbide sphere. From Egs. (2) and (5a), the normalized pressure
is

P A

Pl Bl |1 ani ®
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Fig. 5 Experimental confirmation of the axijal focusing predicted by Eq. (6). The m =0
amplitude of the ap leaky Lamb wave echo was measured as the hydrophone was shifted

away from backscattering {y = 0). For the 440c stainless steel shell studied, the frequency

of the incident 4-cycle sine-wave tone burst corresponds to ka = 24.3




The on-axis distance of the hydrophone from point C’ in Fig. 2 is z and rg = z + a. Figure
5 compares the theoretical prediction from Eq. (6) with experimental data for ka = 24.3.
Inspection of Egs. (5b) and (6) reveals that | pp,(ro, )/pswe(ro)l depends only on y (note
ro/r = [1 + tan?y]-1/2) and that it contains no adjustable parameters. The agreement
between theory and experiment is excellent for a measurement of this type. A detailed
discussion of the theory and experimental methods used in obtaining Figs. 4 and 5 is
contained in Ref. 5 as well as other theoretical and experimental results. The importance of
these results is that a qualitative ray model of the backscattered pressure described the
experimental observations. '

The remainder of this dissertation gives a more detailed analysis of the forward and
backwards scattering of a plane wave from an evacuated spherical shell. Chapter 2
develops quantitative ray methods used in synthesizing the forward scattering amplitude
and, ultimately, the total scattering cross section via the optical theorem. Chapters 3 and 4
investigate quantitative ray methods for the modeling of the form function for
backscattering. The contents of chapters 2 and 3 have been accepted for publication in the

Journal of the Acoustical Society of America. The present form of chapter 4 has been

sumnal of the Accustical Sceiety of America. Since these
chapters are independent papers, they may be read separately. As such, each chapter
contains its own abstract, introduction, sections, appendices, and references. The
numbering of equations, figures, and tables are unique to a given chapter. Mathematical
symbols may differ slightly between chapters, however, each symbol is clearly defined
within the appropriate chaprer. It is suggested that chapter 3 be read prior to chapter 4,
since some results from chapter 3 are used in chapter 4. Two appendices follow the main

text, Each appendix contains material germane to the ray synthesis of the forward and

backwards scattering from an evacuated elastic spherical sheil. This material could not be
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adequately presented within chapters 2 - 4, but it is deemed important for completeness of
the anaiysis. Appendix I discusses Marston's approximation for the complex coupling
coefficient and comparison to an apparent exact complex coupling coefficient for each leaky
Lamb wave is presented. The dependence of the leaky Lamb wave resonance spacing on
the phase and group velocities is also discussed in Appendix I. Finally, Appendix II
contains tables of the leaky Lamb wave parameters necessary for the ray synthesis. These
parameters were generated by extending certain results of the Sommerfeld-Watson
transformation of the partial wave series for backscattering from a solid elastic sphere to the

shell.
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Chapter 2
Ray synthesis of Lamb wave contributions to the total scattering cross

section for an elastic spherical shell

Abstract

The optical theorem relates the extinction cross section, Gg(ka), to the forward
scattering amplitude, f(6 = 0, ka). Here 0 denotes the scattering angle, £ is the
wavenumber of the incident sound, and a is the radius of the scatterer. If the absorption by
the scatterer is negligible so that the scatterer is elastic, G, is equal to the total scattering
cross sectich O;. By applying this theorem to the partial wave series for f(0,ka), we can
obtain an expression for o, for an elastic spherical shell in water. However, the series
representation of o, does not facilitate a direct understanding of the rich structure caused by
the shell's elastic response. In particular, the elastic response is attributable to leaky Lamb
waves. We emiploy a generalization of the geometrical theory of diffraction [P. L.
Marston, J. £coust. Soc. Am. 83, 25-37 (1988)] to synthesize f(0, ka). This simple ray
acoustic synthesis contains a component for ordinary diffraction by the shell and distinct
contributions for the individual Lamb waves that can be excited on the shell. A comparison
of numerical computations for o; utilizing the exact partial wave series and the ray
synthesis shows good agreement in the description of the resonance structure. The relevant
range of ka for this comparison is 7 < ka < 100. The elastic material of the shell is 44Cc
stainless steel and the inner-to-outer radius ratio is b/a = 0.838. Dispersion curves and
radiation damping for Lamb waves were calculated by Watson transform methods. The

structure in G;(ka) due to Lamb waves may also be depicted as a manifestation of forward

glory scattering and experimental evidence for the forward glory is noted.
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2.1 Introduction

Several articles have concentrated on the surface elastic wave contributions to
backscattering from solid elastic spheres!s % 3 and cylinders# as well as spherical5 6, 7 and
circular cylindrical shells.8:9 The surface elastic waves on solid spheres and cylinders are
leaky Rayleigh and whispering gallery waves; while the surface elastic waves on spherical
and cylindrical shells are a generalization of Lamb waves. (Although the strains due to
Lamb waves are not strictly confined to the surface of the shell, it may be appropriate to
label 1.amb waves as surface elastic waves, since the surface of the shell guides the Lamb
wave propagation.) In particular, some of these authors have considered the significance
of surface elastic wave resonances to the backscattering form function, f(8 = 1) defined in
Eq. (1) below. Since the structure found in the backscattering form function is attributed to
the presence of surface elastic wave resonances, then these resonances should also
contribute to the scattering in the forward direction. In this article, we are concerned with
the manifestation of such contributions to the total scattering cross section for an elastic
spherical shell.

When a scatterer is placed in an incident acoustic plane wave of intensity /(W/m2),

tha tatal nawwar in tha anattarad waa ja For sohava ov Aa cles ebhn 4ntnl CAAPEN MY AmAOn
Uiw WAl yU"Vl A1l LIV OwativivAal VV'QV\J 10 EAS/ARY L) e uvnu WO BTG b b QLUSITT T 5 UF Vo

section.10 The extinction cross section, denoted as G,, expresses the total power rernoved
(scattered or absorbed) from the incident plane wave as IG,. From the conservation of
energy G, = O; + Oghs Where [0y is the power absorbed by the scatterer and Gy is known
as the absorption cross section. The extinction cross section is related to the forward
scattering amplitude by the optical theorem reviewed in Sec. 2.2 below.1112 (This

theorem has also been referred to as the extinction theorem.) Some early examples of the

application of the optical theorem to acoustical problems are given in Refs. 13 - 15. For a

scatterer with no absorption, Og4ps = 0, so that G, = 6, and the optical theorem may be used
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to calculate o, directly. (Even for nonabsorbing scatterers, however, some authors16-18
resorted to integration of differential cross section over 47 st to obtain ¢;.) The scatterer
considered in the present paper is modeled as perfectly elastic.

In this paper, the forward scattering amplitude is obtained from the exact partial
wave series and from a synthesis in terms of ray contributions. The synthesis is partially
facilitated by the elastic generalization of the geometrical theory of diffraction given in Ref.
9.

This paper is organized as follows. In Sec. 2.2, the optical theorem is stated for the
case of scattering from spheres. Using the optical theorem and partial wave series
representation for the forward scattering amplitude, o, for an elastic spherical shell is
obtained. The basis of the ray synthesis of o, is outlined at the end of Sec. 2.2. In Sec.
2.3, the component of ©; due to ordinary forward diftraction is developed for the ray
model. Individual Lamb wave contributions to the ray representation of the forward
scattering amplitude are determined in Sec. 2.4. Section 2.5 compares the results of the
exact partial-wave series calculation with the ray model. The pertinent conclusions from
the comparison in Sec. 2.5 are contained in Sec. 2.6 along with a discussion of relevant
aspects of forward glory scattering for spheres. Section 2.6 also summarizes an
experimental observation pertinent to the forward glory of shells and comments on the
cause of certain frequency dependent structure in oy Appendix A discusses the Lamb

wave parameters used in the synthesis as given by Watson transform methodology.1:3.5:9

2.2 The optical theorem for acoustic scattering
A. Partial wave series analysis

A unit amplitude plane wave, propagating in the positive z-direction, in water is

incident upon an elastic spherical shell, The total pressure in the water can be expressed as
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a superposition of the incident plane wave and a scattered wave. In particular, in the

farfield of . shell, the total pressure is 1+ 5

p, = ™2 + (/20f(9)e". (1)

The first term is the incident plane wave with wavenumber & = w/c. The second term is a
spherically diverging scattered wave. The outer radius of the shell is denoted by a and f(6)
is the complex dimensionless scattering amplitude. The harmonic time dependence, exp(-
i), has been and, henceforth, will be suppressed.

The optical theorem provides a fundamental relationship between the scattering
amplitude and G,. Several authors give various expressions for the optical theorem (see,
e.g., Refs. 11, 12, 19, and 20}. For the amplitude normalization used in Eq. (1), it
foliows that

o, = (2na/k) Im{f(6 = 0)}, (2)

where Im{ } means the imaginary part of the enclosed quantity. The significance of Eq. (2)
is that the only scattering amplitude needed is the one for forward scattering. It is

convenient to normalize G, by the geometrical cross section of the shell, a2,

(04/ma?) = (2/x) Im{f(8 = 0)}. 3)

This normalization introduces the dimensionless size parameter, x = ka, into Eq. (3). In
the discussion which follows we consider perfectly elastic scatters so that o; = .
The partial wave series (PWS) representation of the exact forward scattering

amplitv ‘¢ for an evacuated elastic spherical shell is

B, (x)
Dn(x ) ’ (4)

£0 = 0) = (2/ix) Z Q2n+ 1)
n=0
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where n is the partial wave index. The functions B, and Dy, are 5 X 5 determinants whose
elements are complicated combinations of spherical Bessel functions of the first and second
kind.5 Using Eqs. (3) and (4), the normalized total scattering cross section for the shell

becomes
oo B_(x)
(o{naz) = (~4/x9) Z (2n+1) Rc[ﬁa} , 5)
n=0

where Re{} denotes the real part of the enclosed quantity. The dashed curve in Fig. 1, that
contains the complicated structure, is the normalized o, for a 440c stainless steel shell as
computed from Eq. (5) with the material parameters given in Sec. 2.5. There are two
important features in Fig. 1. First, o, is approaching the expected value of twice the
geometrical cross section of the shell as x — e, This asymptotic result for o; is known as
the extinction paradox. Physical interpretations of the extinction paradox have been
discussed by various authors.20-22 Second, and perhaps more importart, the structure
observed in ¢, for a 440c stainless steel shell is a manifestation of the elastic nature of the
scatterer. That is, a comparison of ¢, for an elastic shell and a rigid sphere of radius @ in
Fig. 1 shows that the elastic properties of the shell are important.

The expression for the normalized cross section in Eq. (5) has properties which
would make a geometrical representation worthy of investigation. First, a simple physical
interpretation of the structure in oy is not easily obtained directly from the PWS
representation. Although, it is known that the incident plane wave can excite Lamb wave
resonances in a shell, the quantitative description for this coupling is not immediately
apparent from the PWS expression. Second, it is well-known, that for large ka, the PWS
is a slowly converging series; the number of terms required exceeds ka. See Eq. (16)
below. We examine below a simple expression for o; based on a generalization® of the

geometrical theory of diffraction?3. It should be possible to modify this ray representation
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Fig. 1 Nommalized total scattering cross sections for empty elastic spherical shell in water
and a rigid sphere, each of outer radius a. The short dashed line is the exact partial wave
series result for the shell, Eq. (5), with the stainless steel parameters listed in Sec. 2.5 and
an inner to outer radius b/a = 0.838. The solid, monotonic curve corresponds to the rigid
sphere, where the partial wave series, Eq. (9), is calculated. The long dashed line is the

first three terms of Beckmann and Franz's approximation, Eq. (10), for the normalized

cross section for the rigid sphere
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of the total scattering cross section for objects of other shapes where the cross seciion is
not easily obtained from a PWS.
B. Ray synthesis of the total scattering total scattering cross section

It has been proposed, that the form function describing the steady-state high-
frequency backscattering amplitude from spheres can be approximated by three ordinarily
distinct classes of contributions.13.9 These contributions are: a specular reflection,
transmitted bulk wave contributions, and surface elastic wave contributions. A
superposition of these components gives the scattered pressure term of the total pressure in
the backward direction. (If ka is smailer than about 15, a contribution to backscattering
from Franz-type creeping waves can also become significant for some materials or shell
thicknesses but such contributions were not separately analyzed.) By superposing the
appropriate contributions, the forward scattering amplitude may be synthesized as
discussed below.

To construct the geometrical synthesis of the forward scattering amplitude for the
spherical shell, the specular reflection term for backscattering is replaced by a contribution
that describes the ordinary ’forward diffraction about the shell (see Sec. 2.3 below). The
transmitted bulk wave contributions, that backscattering form functions may contain, do
not occur in the forward scattering amplitude of a thin elastic air-filled or evacuated shell.
That is, there is no mechanism for the transmission of a bulk wave through the interior of
the shell, Since surface elastic waves leak energy continuously back into the surrounding

water, then these contributions must also be included in the forward scattering amplitude.

Hence, the forward scattering amplitude has the approximate form

f(6=0)—~—fFD+§1:f, ©
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where the summaticn is over all possible surface elastic wave contributions. Since the
operator, Im( }, is linear, then by inspection of Egs. (2) and (6) the total scattering cross

section is
"t“"FD*ZGz' %)
)

The forms of the individual components in Egs. (6) and (7) are considered in Secs. 2.3 and

2.4,

2.3 Forward diffraction term for the total scattering cross section

The specific form of the contribution to 6; due to ordinary forward diffraction about

an elastic spherical shell is not currently available fron1 a Watson transformation,! The

simpiest approximation would be the total scattering cross section of a rigid disk of radius
a. That is, the total scatiering cross section for a rigid disk (computed from the optical
theorem) can only be attributed to ordinary forward diffraction. The asymptotic value (i.e.,
ka >> 1) for the normalized total scattering cross section of the rigid disk24 is 2. As noted
previously, (G;/ ta2) — 2 as ka — o is known as the extinction paradox. Although
forward diffraction from a rigid disk gives the expected asymptotic value, this
approximation is inappropriate for the ka range of interest, 7 < ka < 100.

A more suitable approximation for the normalized ordinary forward diffraction
contribution (Ogp/ 7a?) is the total scattering cross section for a fixed rigid or acoustically
hard sphere. To obtain (Opp/ a?), we employ the optical theorem, as given by Eq. (3),
and the forward scattering amplitude for the rigid sphere. The forward scattering amplitude

for the rigid sphere is given by the PWS7: 25

BV § Ja®)
fy = (-2/ix) D 20+ 1) =
7T0 by ()

3 ®)




where j, and h,, are spherical Bessel functions of the first and third kind, respectively. The

prime in Eq. (8) denotes differentiation with respect to the argument of the function. The

result of inserting Eq. (8) into Eq. (3) is

in™®)

]

D' . (9)
O |

(Opp/ma) = (@/x%) Z (n + 1) Re h
' n=0

The solid, monotonically increasiqg curve in Fig. 1is opp/na? for a rigid sphere of radius
a. From Fig. 1 one observes that the cross section for the rigid sphere asymptotically
approaches 2. Although Eq. (9) is a suitable candidate for (Ggp/ na?), its dependence on x
is complicated and , hence, not a simple parameterization of the ordinary forward
diffraction contribution to ©; of an elastic sphere,

Beckmann and Franz performed a modified Watson transformation on a rigid
sphere result similar to Eq. (9).26:27 The Watson transformation transforms the slowly
converging PWS into a more rapidly converging series. The result of their calculationis a

series in inverse powers of x,
(Op/ma?) =2 = 17284 x° - 20104 x4 + 0(x) . (10)

The first three terms in Eq. (10) are plotted as the long-dashed line in Fig. 1. From
inspection of Fig. 1, we observe that the Beckmann and Franz result is, perhaps, the
simplest approximation of the ordinary forward diffraction term in Eq. (7) throughout the
region of interest 7 < x < 100. Thus, for the numerical computations given in Sec. 2.5, we
use the first three terms in Eq. (10) for the contribution of ordinary forward diffraction to
(o738

It may be argued that the second term in Eq. (10) represents approximately the x
dependence of contributions of grazing rays (also known as edge rays) to Im.[f(8 = 0)] for

arigid sphere. In addition, there could be distinct ray contributions which wrap completely
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around a rigid sphere. The waves associated with those rays are creeping waves having
phase velocities close to the speed in the outer media (water). The danmiping of such waves
is sufficiently large that contributions from a complete circumnavigation to forward

scartering are generally thought to be negligible for impenetrable spheres. 3,28

2.4 Leaky suriace wave contributions to the forward scattering amplitude
In this section, we use the methodology of geometrical theory of diffraction
generalized to elastic objects? to derive an expression for an individual surface elastic wave

contribution, fj, to the forward scattering amplitude. The acoustic ray diagram in Fig. 2
facilitates an understanding of this ray synthesis of fj. The ray diagram is similar to those
discussed in Refs. 1, 5 and 9. An acoustic plane wave propagates along the ray AB in the
posidve z-direction. At the point B the acoustic wavefield in water couples to the elastic
shell and launches a surface elastic wave. The surface elastic wave propagates from B o
B’ shedding energy continuously back into the water. At B’ the radiated energy is directed
along the forward scatterin g direction (parallel to the +z-axis). The surface elastic wave
repeatedly circumnavigates the shell radiating energy each time in the forward direction.

The points B and B’ are determined by the phase velocity wace-matching condition,
61 = arcsin(c/cl), ¢ 2c, (11)

where 0, is the local angle of incidence and ¢/c; is the ratio of the speed of sound in water,

¢, and the phase velocity along the shell’s ouser surface ot the Lamb wave, ¢;. The phase
velocity is assumed to be supersonic.

The form of the individual surface elastic wave contribution to the forward

scaitering amplitude is




CO

Fig. 2 Acoustic ray diagram for Lamb wave contributions to the forward scattering
amplitude for Lamb waves having ¢; > ¢. The outer radius of the shell is a and the inner
radius is b. The incident acoustic plane wave launches a Lamb wave in the vicinity of point
B. The Lamb wave propagates along the shell and radiates in the forward direction at point
B’. The points B and B’ are determined by Eq. (11). The qualitative features of the ray
diagram are made quantitative through Egs. (12) - (14) to describe the scattering. The ray
synthesis also contains a contribution due to diffraction about the shell. That includes

contributions due to rays which touch the shell near E at the edge.
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in, -(n-29,)8, < . -2mnf, i2mmxc/c
f,=-Ge le . ’26"““6 le L
m=0

(12)
The coupling efficiency of the acoustic wavefield in water with the elastic shell at the points
B and B’ in Fig. 2 is characterized by a complex coupling ceefficient G;. The gsometrical

phase shift,
n, = x(c/c))(n - 26)) - 2x cos(8)) (13)

accounts for the difference in phase of a surface elastic wave traveling from B to B’ along
the shell and a plane wave in water traveling from B to B’ as if the shell were not present.
The factor exp[- (n - 26, )By] is associated with the radiation damping of the surface elastic
wave propagating along the arc BB'. The radiation damping parameter is denoted by [
and has the units of np/radian. The summation occurs in Eq. (12) from the
circumnavigations of the surface elastic wave. The m = 0 term is the first partial
circumnavigation of the shell; while m = 1, 2,... is for each successive complete
circumnavigation. The terms exp(-2mnf;) and exp(i2mnxc/c)) are the additional radiation
damping and phase shift. Finally, the term exp(imr) arises from the passage of the surface
elastic wave through the caustics at the points C*and C”,

It is observed that the summation in Eq. (12) is a geometric series and may be

expressed in a simple analytic form.3 Summirg the series in Eq. (12), we have

in, -(r-2@) -2nB, i2rxc/c
L ’B‘]/[1+e ﬁ’c H.

f,=(-G,e a4

The form of the denominator in f; is that of a Fabry-Perot resonator.3,9 Equation (14) is
the desired ray synthesis for f].
The coupling coefficient, Gy, for the elastic solid sphere was determined from the

Sommerfeld-Watson transformation on the appropriate PWS.1.9 At the time of this

writing, an expression for the coupling coefficient for the elastic spherical shell is not
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available directly from the Watson transformation. However, Marstor: has derived
approximations for G for an elastic sphere and cylinder.9:29 The approximations were
supported by various numerical results for solid spheres and cylindrical shells.” The

relevant result for spheres may be written
10,
Gl=8nBl (clepe (15)

where ¢; denotes the phase of G; and it may be argued?? that ¢; = 0. For the calculation in
Sec. 2.5, ¢y for the Ith surface elastic wave is taken to be identically equal to zero. It is
noteworthy that the magnitude of G; depends on only the damping parameter and the ratio
of the velocities. This result for | G; | was confirmed in Ref, 5 for the stainless steel shell
considered here by use of measured backscattering amplitudes. The computations
discussed in Sec. 2.5 gi.vc additional support for Eq. (15) with ¢; =0 as does a synthesis
of the steady state backscattering amplitude for the shell considered.30

The ray synthesis of the contribution of a particular surface elastic wave is given by
Egs. (11), (13) and (14) with the approximation, Eq. (15), used for the coupling
coefficient. Inspection of Egs. (11) - (15) shows that a particular surface elastic wave
contribution depends on only the damping parameter and the phase velocity ratio. The

method used for determining f3; and c/c; is described in Appendix A.

2.5 Numerical results and discussion
The calculations shown in Figs. 3 - 8 are for a 440c stainless steel shell immersed
in water. For these computations, the material parameters for 440c stainless steel were

selected because of previous work with a shell composed of this material.5 The

longitudinal velocity, ¢, for 440c stainless steel is 5.854 mm/uLs and the shear wave

velocity, ¢y, is 3.150 mm/us. The density is ps = 7.84 g/cm3. The shell's outer radius is




a = 19.05 mm and the ratio of the inner-to-outer radius is b/a = 0.838. The speed of sound
for the water is ¢ = 1.479 mmjjs; while the density is p = 1.00 g/cm3.

For the PWS computations, we use Eq. (5), where the determinants B, and D, are
given in Ref. 5. The PWS calculation for (0; /na2) is performed over the range 0 < x <
100. In Figs. 3 - 8, the dashed curves are the exact PWS results. When summing PWS,

the following maximum values for the partial wave index were tested and found to ensure

Convergence:
n_=2+[x+40x"], x <8,
" (16)
n_=3+[x+405x"], x 28,

where the square brackets imply the integer part (i.e., rounded up or down) is to be used.
These values are similar to ones used when evaluating the Mie PWS for light scatering.3!
That the maximum partial wave index in the optical and acoustical cases should be similar
may be argued from the localization principle.12 (The proper convergence of the PWS for
the shell considered was verified by substantially increasing nmgy. Equation (16) should be
used with caution, however, for thin shells having significant subsonic wave
contributions.) Since a Lamb wave resonance can contain sharp peaks, the increment of x
needs to be small. Hence, it is apparent that the implementation of Eq. (5) can be relatively
computationally intensive.

The particular Lamb waves, that can be coupled to a shell with the above material
properties and in the range 7 < x < 100, are the two lowest antisymmetric or flexural modes
ap and a; and the two lowest symmetric or dilatational modes sp and 5. The present ray
synthesis is restricted to x > 7 for two reason. First, the numericai procedure used to
obtain Lamb wave damping parameters and phase velocities begins to breakdown as noted

in Appendix A. That is, the numerical accuracy of the results become suspect. Second, the

30




ap mode tecomes subsonic for x < 7. The present ray synthesis is limited to supersonic
surface elasiic waves as evident from Eq. (11) and the related analysis given in Refs. 1 and
3.

The solid curves in Figs. 3 - 8 are the ray synthesis, where (Ggp/ra?) is given by
the first three terms in Eq.(10) (a monotonic function of x) and the appropriate Lamb wave
contributions are included. In Fig. 3, the ray result has only two terms. These terms are
the ordinary forward diffraction component and the lowest antisymmetric Lamb mode
contribution, 04, It is apparent that the course structure, for 7 < x < 25, is attributed
entirely to the gg flexural Lamb wave. The sharp resonances in Fig. 3, that are not
modeled, are from the o5, contribution. Figure 4 includes Oso. The agreement of the ray
synthesis and the exact PWS for (0, /1a2) is good considering the ray model is based on

high-frequency methods. Observe that the above synthesis appears to be accurate down to

o & o L ;

x~9. Itis noteworthy, however, that the 5o resonances near ka of 17.60, 21.28, and
24.95 may not have been fully resolved due to the narrowness of their line widths.
The region 25 < x < 50 is plotted in Figs. 5 and 6. The vertical axis has been
magnify to enhaﬁce the visibility of narrow resonance features and to better iliustrate the "
agreement between the ray and PWS results. In Fig. 5, the ray 1_odel contains the ordinary _

forward diffraction term and the G and sy Lamb wave contributions. Again, the broad
structure is associated with the ag Lamab wave while the sharp resonances are attributable to
the 5o Lamb wave. However, as noted in Appendix A, the g; antisymmetric mode can be
excited on the shell for x > 40. In particular, the resonance features at x = 43, 44, 46 and
50 are not associated with either the ag or 5o modes. By adding the a; contribution in this

region, we recover all the resonance features of the PWS result in the ray synthesis of the

Cross section.
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Fig. 3 A companson of the exact partial wave series representation of the normalized total

scattering cross section with the ray synthesis. The dashed cuive is the partial wave serics

result, Eq. (5), and the solid line is the ray model. Only the Ogp) and o3, contributions are

include in the ray model.

—




33

s %i
1]
i
A
TERL
it A
3} Wiy N
DRI
REA
Yo\
- Nm
O B 2t
[
ik |
!
/
'I
7
/4
O’-l’ L J u
0 5 10 15 20 25
ka

Fig. 4 A comparison of the same ka range as in Fig. 3, but the G5, contribution has now
been included in the ray synthesis. The broad and narrow structures appear to be correctly

synthesized. The resolution of each plot was enhanced relative to the plots in Figs. 2 and 3

50 as to more accurately describe the narrow sp lamb wave resonances.
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Fig. 5 The dashed curve is the partial wave series result for the normalized total
scattering cross section. The ray synthesis (solid curve) contains the contributions Ogp,
Ogp and Og,. The broad structure is associated with the ag Lamb wave; while the narrow
peaks and dips are from the s Lamb wave. This level of synthesis fails to reproduce

features at kg = 43, 44, 46, 48, and 50.
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The ray synthesis for 50 < x < 75 is shown in Fig. 7. The exact PWS computation
is the short dashed line. The solid line is a ray synthesis of the normalized o;; where the
relevant contributions are: (Ggp/ra2), ag, so, and a;. A comparison of the ray and PW§
results demonstrates that these contributions are sufficient to describe both the broad and
narrow resonances. In particular, the features in the normalized o; for x <71 are entirely
due to the ag, so, and a; Lamb waves. For x = 71, the acoustic wavefield in water can
couple into the s; Lamb wave. Tlie significance of the s; Lamb wave to the ray synthesis
is observed from the long dashed line in Fig. 7. By adding the s; Lamb wave, the ray
model is found to give a better approximation of the PWS calculation for 50 < x < 75.

The last figure, Fig. 8, corresponds to the range 75 < x < 100. The ray model
contains the (Ggp/na2), ag, 50, a1, and 51 contributions. An examination of the individual
components in the synthesis allows one to identify the particular surface wave responsible
for a specific structure. It is important to notice the synthesis is essentially the same as the
PWS computation except for a small offset. That is, the ray synthesis accurately
reproduces the resonance features in this region.- Finally, the ray synthesis appears to be
approaching thé extinction-paradox value of 2.

The offset of the ray resuit from the PWS computation, evident in Figs, 5 - 8,
does not appear to be related to the ray moedel of the Lamb wave contributions to o since
the shape of the modeled structure agrecs with the PWS computation. The offset appears
instead to be related to the use of a rigid sph=re model of ordinary forward diffraction.
Numerical tests show that the approximation for the total scattering cross section of a rigid
sphere, Eq. (10), converges to the exact rigid PWS result, Eq. (9). For example, at x =
75, Eq. (10) yields a value of 1.8965 for opp/na?, while the exact result from Eq. (9) is

1.8971. The difference of these two calculations is 0.0006; whilz the offsct at x = 75 is

0.0344, Clearly, the use of Eq. (10), instead of Eq. (9), for the ordinary forward
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Fig. 7 Like Fiz. 6 except for ka > 70 where the extra curve with long dashes is a synthesis

which includes the s; Lamb wave contribution.
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Fig. 8 The comparison of the exact calculation (dashed) and the ray synthesis from the

contributions: Opp), Gag, Osg, Oa, and Os;.
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diffraction does not account for the offset. Furthermore, a comparison of a synthesis (not
shown), employing Eq. (9), with the exact PWS, Eq. (5), shows a similar offset. Hence,
the total scattering cross section for the rigid sphere is not entirely appropriate for the
description of the ordinary forward diffraction contribution to o, of an elastic shell. The
ordinary forward diffraction component is also not accurately modeled by the total
scattering cross section of a soft sphere. That cross section for a soft sphere approaches 2
from above as x — oo and diverges to +o as x — 0.1428 It appears that the correct model
for 6pp should lie between the values of the cross sections for rigid and soft spheres. This
conjecture may also be supported by computations® indicating that for shells, poles in the
complex ka plane "tentatively associated with the Franz wave are considerably removed
from their counterparts for a rigid sphere, in the low-ka region."

It is noteworthy that the effect of including the s1 Lamb wave near the right-hand
side of Fig. 7 is to reduce an even greater offset between curves which is otherwise
present. Inspection of Fig. A1 shows that in this region [3; for [ = 51 is relatively large

which suggests that rays having large (3; can give rise to a smooth shift in o,

The structure manifest in Fig. 4 in the region x < 7 merits discussion. It is

apparently associated with relatvely closcly spaccd resonances sincc ncar resonances,
phase and magnitude of f in Eq. (3) can vary rapidly with x. Without attempting to model
detailed resonance manifestations it is possible to comment on the nature of the relevant
modes. It is shown in Eq. (A6) that the frequency of the 'owest purely radial or
"breathing” model occurs at x = 6.3. Calculations of contributions to f(0 = ) given by
Sammelmann et al.,% based on a generalization of resonance scattering theory, indicate,

however, that the breathing resonance contributes weakly to scattering unless the shell is

much thinner than the one considered here. As evident from elementary considerations and
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the discussion of Egs. (A4) - (A7), the hreathing mcde is associated with the ; = so Lamb
wave.

The structure in the region x = 7 is evidently associated with subsonic flexural (/ =

ap) Lamb waves. Note that the peﬁks in the plot of 6/na are relatively similar in
appearance for x < 7 so it may be anticipated that the underlying mechanism is similar for
each peak. Furthermore it is physically plausible that each of these peaks should be
associated in some way with resonance scattering, especially since we are viewing the total
scattering in a region of x where opp/ra? is relatively small. What may be surprising is
that 6, (and hence ¢,) has peaks of over four times the physical cross section, na2, of the
sphere. The maximum having the lowest x occurs at x = 2.5, The elastic mode of a
sphericai shell having the lowest natural frequency is ordinarily associated with: the n =2
(or quadrupole) partial wave with / = ap (or flexural) motion of the shell. (See, e.g., Ref.
6,32, and 33.) In corjunction with the aforementioned peak magnitude of G./na2, the
computations of Skelton and Waterhouse33 of the acoustic energy streamlines in water near
slightly absorbing steel shells are hotcworthy. Those calculations, which were performed
with an incident wave at the w of the # =2 resonance, suggest that the energy streamlines
may be deflecied toward the shell over a cross-sectional area much larger iban ihat of the
shell. (Computations of electromagnetic energy flow for light incident on particles3# have
similarly been useful for understanding large optical 6..) The other peaks in the region x <
7 are: evidently associated with resonances with n > 2. Spherical shells typically have

several flexural resonances with n > 2 at @ below the breathing resonance.32

2.6 Yorward glory scattering, physical interpretation, and conclusions

The ray synthesis of the total scattering cross section o, for a 440c stainless steel

shell demonstrates the usefulness and power of this method. The simple parameterization
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of the ray model correcdy gives the surface elastic wave resonance features of the Lamb
wave contributions. Furthermore, this parameterization of 6, reduces the problem to only
the individual Lamb wave damping parameters, [3;, and the phase velocity ratios, ¢/c;.
Thus, a simple physical interpretation of the observed structure in Figs. 3 - 8 can be
achieved.

These computations confirm the validity of the numerical methods used in obtaining
Py and c/c; for the Ith type Lamb wave. The above calculations give further support for
Marston's approximation, Eq. (15), for the coupling coefficient.?2% Also, Figs. 3 - 8
demonstrate the correctness of the assumed phase @; of G,. That s, if ¢; differs
significantly from zero, then the contribution of the Ith Lamb wave to o; would be altered
by the optical theorem, Eq. (3). For example, we have confirmed that setting @;=17
inverts the resonance structure in the synthesis and destroys the agreement with the partial
wave series result.

The ray shed in the forward direction from point B’ in Fig. 2 appears to ¢imanate
from within the sphere. The location of the virtual source may be constructed by
considering the crossing of the adjacent dashed ray which differs infinitesimaily in

i a discussion giveit in ihe Appendix of Ref. 2 io ihe preseni
case of forward scattering it may be shown that the virtual focus F; where the dashed ray
crosses the forward ray is located a distance equal to the outer radius a of the sphere behind
e vertical line through C”. Since Fig. 2 may be rotated about the C'C” axis, the virtual
source is ring-like and the forward directed wavefront has locally the shape of a circular
torus. Such outgoing toroidal wavefronts from spheres were previously investigated for

acoustical backscatteringZ-5:35 and give rise to what has been termed "glory sczitering”

because the enhancement of light scattering from cloud droplets (known as the optical

glory) is attributable to toroidal outgoing optical wavefronts,12
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From the discussion above it is evident that the structure in Figs, 3 - 8 attributabie
to Lamb wave contributions is also a manifestation of forward-directed glory scattering.
The important point is that the rays associated with the Lamb waves couple on-to and off-of
the sphere with nonzero impact pararneters so the associated outgoing wavefront is toroidal
and the contribution to the form function f{@ = 0) is enhanced by axial focusing. While the
backward directed glory has long Geen of interest,)2 Nussenzyeig and Wiscorabs36
relatively recently noted that the forward optical glory of dielectric spheres gives rise o an
oscillation of the normalized optical extinction cross section which is quasi-periodic in the
optical ka. (The mechanism for producing optical glory rays in solid dielectric soheres is
somewhat different from that considered here for elastic shells,) The scattering pattern
associated with a forward directcd‘ optical glory has been observed ir polarized light
scattered from bubbles in a viscous silicone 0il.37 Direct experimental evidence of forward
glory scattering of sound from shells due to Lamb waves has been obtained for scaitering
of short tone bursts in experiments similar to those described in Ref. 5 but with the
hydrophone placed on the forward axis.38:39 What follows i a brief summary of an
observation relevant to the present discussion.

Figure 9 shows 2 time record of the amplified signal from a hydrophone placed on
the forward axis, The sphere is 440c stainless steel of radius @ = 19.05 mm and bja =
0.838. The incident burst was four cycles of a 653 kHz sine vave which corresponds to
ka = 53. The experimental technique is similar to the one described in Ref, 5 for
backscattering from the same shell. The large burst is attributable to rays in tne water
which graze the sphere. (That may be demonstrated by removing the sphere and observing
the arrival time of a signal directly from the source.) The burst which arrives 11 ps prior to

the large burst is attributable to forward glory scattering associated with Lamb waves on the

sphere. It arrives prior to the large burst since the (slower) grazing ray has its entire path in
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water. From inspection of Fig. 2, the burst which travels along path ABB’A’ is advanced

in time relative to a burst which just grazes the sphere at point E by an amount
At, = (2afc) cos(0)) - (a/cgl)(n -20,, an

where the calculation of the group velocity cg for the /th Lamb wave is discussed in Ref. 5.
This burst is associated with the m = 0 term in Eq. (12). It is noteworthy that for
supersonic Lamb waves (c; > ¢) where Fig. 2 is applicable, that Ay >0 when (as is usually
the case) ¢y > ¢. For the sphere under consideration, Eq. (17) predicts Ay =11 ps for
both | = ag and sp when ka = 53, in agreement with the observations. From the arrival time
alone it is not possible to discriminate between [ = ag and sp Lamb waves mechanisms at
this ka. (At other ka, the calculated Ay for these [ differ.) The late structure of the record
shown in Fig. 9 is at least partially associated with Lamb waves which have traveled
completely around the shell and radiate in the forward direction. A direct comparison of the
amplitudes of the Lamb wave and edge diffracted bursts in Fig. 9 is not easily made with
theory because of complications in calculating the edge diffracted ray amplitucle for an
observer not in the far ficid. Nevertheless, from the arrival time and appearance of the
carly burst in Fig. 9, it can be concluded that forward directed Lamb wave contributions to
scastering may be readily observed. It was also observed38:39 that the amplitude of the
early Lamb wave burst decreases as the receiver is moved off the axis in the way
characteristic of axially focused (or glory) scattering,2.5:35

Consider again the total cross section and form functions characteristic of steady
state scattering. Inspection of Figs. 7 and & reveals the presence of a broad structure
having a quasiperiod Ax = 9. This structure is primarily due to the variation in phase with

ka of the f; contribution with [ = gp as shown by the analysis which follows. From

inspection of Egs. (3) and (14) it may be anticipated that o, contains a structure periodic in




44

1+ FD\’.
P
: ”
Sagt®
Yot
=5 -
S LW
=3
S !
o
= 0 1
'a i
£ 1
a ‘
o |
a | J |
]
—1 -
0 20 40

Relative Time (us)

Fig. 9 Time record of on-axis forward scattering of a 653 kHz 4 cycle tone burst from a
stainless steel shell. The contribution labeled FD is associated with ordinary forward
diffraction. Itis preceded by a contribution labeled LW attributed to Lamb waves because
of its arrival time. The observation experimentally confirms the existence of a forward
directed Lamb wave contribution. The structure following the FD burst is at least partially
attributable to repeated circumnavigation of Lamb waves, though there may be some weak

scattering from a three-pronged wire mount which supported the sphere.
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ci:anges of 1; by -2x. (It is noteworthy here that at resonance3:2 exp(i2nxc/cy) = -1 and the
denominator in Eq. (14) has a specific phase.) From Eq. (13), the change in x associated

with A1 = -2 may be approximated as
Ax, = 2n[2 cos(8)) - (cle)(m - 20)] ', (18)

provided that c; depends sufficiently weakly on x that dispersion may be neglected. Of
particular interest is the result that for I = aq, cj/c increases only from 1.95t0 2.04 as x
increases from 50 to 100. Taking ka = 75 gives cj/c =2.028 and Eq. (18) predicts Ax; =
9.0 in agreement with the quasiperiod manifest in the calculations. The apparent relative
importance of the / = ag contribution to the underlying structure may be attributable to the
relatively large value of the associated | G; | evident in Fig. 13 of Ref., 5. (The I = 5g
contribution may also produce a superposed broad structure in oy, however, it is more
difficult to estimate the associated quasiperiod because of dispersion.) Note that the
separation Ax) is not directly caused by the separation of specific resonances though the
finer structure in 6 is attributable to resonances. When the surface elastic waves are only
weakly dispersive the spacing between resonances may be approximated as AxyeS = Collc
(see, e.g., Ref. 7) and when dispersion is negligible this becomes? Axes =~ ¢j/c. Hence
for | = agp and the ka region considered above Ax;"¢S = 2 which is much less than the
quasiperiod of the broad structure,

Nussenzveig and Wiscombe30 note that the structure in the optical 6; of dielectric
spheres (which is quasiperiodic in ka) ariscs from an "interference between the forward
diffraction peak and forward glory contributions ...". Though the details of the glory
contributions differ here, this interference condition also leads directly to Eq. (18) for

weakly dispersive Lamb waves. [This may have been anticipated by comparing the form

of Eq. (18) with the consequence of setting in Eq. (17), Ay to an integer multiple of the
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wave period 21t/w.] Another example of a broad modulation of a cross section is that of
backscattering from a tungsten carbide sphere discussed by Williams and Marston.3 For
certain ka regions, resonance reduces the total amplitude, but at other regions, it causes an
increase. In that case the relevant interference was between the specular contribution and
the contribution due to Rayleigh waves on the sphere.

There has been increased interest in ray treatments of wave propagation on
cylindrical shells.8.94041 1t seems appropriate therefore to comment on the conn. stion
between ray methods for leaky surface elastic waves on cylinders (Sec. V of Ref. 9) with
the present results for the forward glory of spheres. The connection is as outlined in Sec.
VI of Ref. 9 where it is shown that ray results for cylinders may be adapted to construct the
farfield amplitude due to surface elastic waves on spheres. The G; used here in Eqgs. (12)
and (14) and elsewhere in Refs. 1, 3, 5, and 9 for spheres is descriptive of farfield
amplitudes. The coupling coefficient G for cylinders (Ref. 9, Sec. V) is at leas.
approximately descriptive of near field as well as far field amplitndes. The cylinder
analysis facilitates the approximation of the local amplitude of the outgoing toroidal
wavefront near a sphere [Eqgs. (54) and (57) of Ref. 9] and the approximation of the
diffraction integral for glofy scattering3? relates those local amplitudes to the far-field form
function f1. [See Eq. (55) of Ref. 9.] It is the intent of one of us (P.L.M.) to give a more
detailed description of the connection of results for spheres and cylinders in a subsequent
publication 42

It is noteworthy that since the optical theorem in its most general form!1,12,19-21
relates G, to the forward scattering amplitude, it is applicable to objects having complicated
shapes. In principle, at high frequencies ray methods could be developed to estimate

forward acoustical amplitudes and give approximations for 6, of complicated objects.

Furthermore, ray methods could be used which include absorption by the object.
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Appendix A, Lamb wave damping parameters, phase velocities, and the
effect of the breathing mode |

The Lamb waves considered in Ref. 5 are the lowest antisymmetric or flexural
wave, dg, and the lowest symmetric wave, s3. The material and geometrical parameters for
the particular shell studied in Ref. 5 are given here in Sec. 2.5 and the range considered
was 20 <x <75. We extended, here, the range of x = ka for both gp and spto 7 < x <
100. Furthermore, we find that the a; and s; waves can be excited on the elastic shell for x
greater than 41 and 70, respectively. The contributions of the @) and s; waves to O; are
discussed in Sec. 2.5.

The numerical method, implemented in the determination of 3; and ¢y/c is given in
Appendix A of Ref. 5. 'The equations to be solved are based on applying Watson
transform methodology given for solid elastic spheres!:3 to the case of a spherical shell.5»

The relevant results are as follows:

Dvl(x) =0, (A1)
vl=al+i[31, (A2)
(Cl fc) = x/(al +1/2). (A3)

Equation (A1) uses the determinant in the denominator of the PWS, Eq. (4), for the elastic

shell; where the integer index, n, has been replaced everywhere by the complex index, ;.
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The complex index, vy, is obtained by solving Eq. (A1) at fixed values of x. The damping
parameter, By = Im (v}, is immediately obtained (as a function of x) for the /th type Lamb
wave. Figure Al is a plot of v; for four Lamb waves that can be excited on the shell
considered. It should be noted that the radiation damping is not necessarily weak.? In
solving Eq. (A1), Bessel functions of the first and second kind of complex order ang real
argument y must be calculated. A discussion of the algorithm employed for these functions
is given in an appendix of Ref. 43. When the conditions | v;| 2 3 and 3/ v;1 2 10-6 hold,
then the calculated values are asserted to have errors of less than 0.00001 +i0.00001.
From inspection of Fig. A1, it is found that for the sg and a) Lamb waves the condition | v;
| 2 3 is violated at smal! ka. However, the computations presented in Sec. 2.5 suggest that
the accumulated error from these two contributions are not significant. We did not search
for roots corresponding to a generalization® of rigid-sphere Franz waves (o the shell since
those would be expected to have large P; and ¢; near c.

The normalized phase velocity is determined by using Eq. (A3). The dispersion
curves for the various Lamb waves are displayed in Fig. A2. There are three features that
are importaat to note. First, the normalized velocities for the a; and sy Lamb waves appear
to diverge as they approach their cut-off frequencies. (These cut-off frequencies are
analogous to the cut-off frequencies for the propagation of particular modes in a
waveguide. There is, however, a(iditional structure near the cut-off of the s; mode, the
detail of which is not shown in Figs. Al and A2.) Second, the ¢; for / = s¢ appears to
diverge as w approaches the natural frequency wp of the lowest purely radial or "breathing"
mode of the shell. This divergence is plausible since radial motion of a shell can have the
same phase at all surface points when o = wg. For a thin spherical shell in a vacuum, wg
is related to the lowest purely radial or "ring” frequency wr of an infinite cylindrical shell

of the same material via the approximarion
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Fig. A1 The loci of roots, v, from Eq. (A1) for the ay, s, a;, and 57 Lamb waves on a
fluid loaded stainless steel shell. These loci are respectively the solid, short-dashed, long-
dashed, and short-long dashed curves. The arc length along each curve is monotonic in ka

and the lower and upper values of ka are indicated.
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Fig. A2 Normalized phase velocities along the outer surface of the shell, for ap, so,

a1, and sy Lamb waves. The legend is as in Fig. A1 except that adjacent to each curve is

one with short dashes which was calculated from plate theory cerrected approximately for

curvature as described in Ref, 45 and Eq. (A8). Note that the trye ¢t, I = 50, appears to

diverge as the kq of the breathing mode is approached.
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_ 172
wp =21 +V)] T, (Ad)
where V denotes Poisson's ratio which for 440c stainless steel is 0.296. Equation (A4)

follows from Eq. (7.114) of Ref. 32. For a thin shell32
~c, /i = [E/1 -~ VIp % = 5.31 '
O)R = CPL a, CPL - [ /( )ps] T mm/[.ts, (AS)

where E denotes Young's modulus, cpy, is the low-frequency phase velocity of
compressional waves in an elastic plate and a = (a + b)/2 is the middle radius of the shell.
(The combined result for g also follows from Love.44) If the effects of fluid loading on
resonance frequency are completely neglected, the estimated ka of the breathing resonance
is

e il (201 + V2 - vz e, /o) = 6.3
Xg = o ) (h/2a Cp f€)=6.3, A6)
where h = a - b is the shell thickness. For a shell surrounded by water, fluid loading

reduces xp by a fraction of order

my/psh = (p/pg) (a/h) x37, (A7)

where mp = pa xg-2 is the relevant "model accession to inertia” ratio.32 Since mp/pgh =
0.018 << 1 for the sphere considered, fluid loading should cause xg to be reduced only
slightly from the estimate based on (A4). The third feature is a cut off frequency for the 51
wave. ltis somewhat analogous to the cutoff near the breathing mode since it lies close to
the condition ka =~ wep /(1 - b/a) ~ 77 of the lowest thickness resonance discussed in Sec.
IlI of Ref. 5.

The shortest dashed curves in Fig. A2 are the results of introducing a curvature

correctionS into Lamb's equations (given in Ref. 5) for a flat plate in a vacuum, The

thickness of the plate is the thickness i = a(l - b/a) = 3.1 mm of the shell. The

approximate curvature correction gives the phase velocity ratio as#
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) -1
(¢, /) =[(cpyelll - (h2a)] (A8)

where (c/)p is the phase velocity of the lth Lamb wave on the plate. The comparison in Fig.
A2 shows that a useful initial estimate of the phase velocity ratio can still be obtained
through Eq. (A8) and the plate equations. The deviation of the sg result from (A8) with the
proper value from (A3) is a manifestation of the hoop stresses associated with the breathing
mode discussed above. The difference between the curves for both the @1 and s; Lamb
waves may be due to the radiation loading. The curvature of the plot of ¢j/c with [ =57 at
the mode onset may be associated with the relatively largé value of f; evident in Fig. Al.
Root computations not shown in Figs. Al and A2 indicate that there is a mode for
which the low-frequency cut off is at x = 83 for which ¢;/c always exceeds 8 in the region
between this cut off and x = 100. We have tentatively identified this mode as the s2 mode.

Computations indicate that it does not significantly affect o, in the region considered,

evidently due to the smallness of the ¢/c; factor in Eq. (15) and the magnitude of [3;.
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Chapter 3
Longitudinal resonances in the form function for backscattering from a

spherical shell: Fluid shell case

Abstract

Reverberations of longitudinal waves in a hollow shell can strongly affect the
backscattering amplitudes at frequencies associated with a thickness resonance. The
phenomena is studied for the idealized case of vanishing shear stresses in the shell material
by taking that material to be an inviscid fluid. The sound speed ¢y, for the fluid is taken to
be that of longitudinal waves in elastic materials of interest; the surrounding fluid being
water. An exact partial-wave series gives the form function f for backscattering and plots
of | 1 as a function of ka dispiay resonance features where a denotes the outer radius of the
shell. These features are also recovered in a direct geometrical calculation of f which sums
the amplitudes associated with rays multiply reflected within the curved shell. This
geometric synthesis shows that the effects of curvature are essential to modeling f. In
addition to numerical comparisons with the partial wave series, the geometriczl calculation

1s tested by cousidering several limiting cases and results anticipated from elementary

consideration are recovered,
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3.1 Introduction

Various authors have considered how resonances affect the reflection of sound
from flat elastic plates! and fluid layers.2 Others have considered the significance of
surface guided wave contributions to the backscattering of an incident plane wave from
elastic spherical3-6 and circular cylindrical shells.6-8 The scattering amplitude can be
represented in terms ¢f contributions from surface gnided waves which circumnavigate the
shell, continually radiating energy into the surrounding water. This surface guided wave
representation can give a simple quantitative description of resonances which has been
studied in detail for solid spheres.%-10 When exploring such a representation for elastic
sheils,11 we have seen a justification for invescgating the reverberation of bulk waves
transmitted through curved shells which reflect from the inner surface. Associated with
ransmitted (bulk) longitudinal waves are thickness resonances.312 To isolate the
contribution of reverberation of transmitted longitudinal waves from other contribntions,
we restrict our attention to backscattering from an evacuated, idealized spherical fluid shell
in water. This sirnplification allows a quantitative ray representation of the scattering
ampiitude to be developed and tested without considering contributions associated with
transverse waves. The testing of ray models for fiuid objects can be justified because of
insight gained into the behavior of more complicated situations.13

The usual condities for the existence of a longitudinal resonance is that the

thickness of an empty sheil should be an integral number of A, /2 where Ay is the
longitudinal wavclength within the fivid. This condition is applicable when the impedance
pecr, of the shell material exceeds pc of the surrounding fluid. For an incident acoustic

plane wave with nngular frequency ¢, the resonance condition can be written as

kLh = N> (n=1,2,..) (D)




where k7 = w/cy, is the wavenumber and cy, is the speed of sound in the fluid.3 As will be
shown below, the manifestation of thickness resonances is contained within the specular
reflection form function fsp and is intimately related to the curvatures of the inner and outer
surfaces of the shell. Examination of | fy, | shows that the effects of curvature are largest
for those kph satisfying Eq. (1).

The organization of this paper is as follows. A derivation of a ray acoustical
representation of the form function is summarized in Sec. 3.2. This geometrical synthesis
of fsp decomposes into a contribution for the reflection from a vacuum-backed flat plate and
a curvature dependent component, fzc. In Sec. 3.2, the synthesis is compared with exact
computations employing the partial-wave series (PWS) representation of the form function
for backscatter. Section 3.3 examine the significance of the curvature correction f.
With.n Sec. 3.3, the most significant contributions to f; are observed to occur at the
resonance condition Eq. (1). To further support the claim that the form obtained for £, is
correct, Sec. 3.4 considers several limiting cases of the fluid shell parameters. Each
limiting case produces the expected result and thus supports the geometrically derived form
of the curvature correction. Section 3.5 contains concluding remarks and notes the
importance of f; to the scaitten'ng of an acoustic plane w: ve from an elastic spherical shell,

The article contains three appendices. Appendix A confains the essential details of
the matrix method employed in determining the geometrical spreading factor and amplitude
coefficient introduced in Sec. 3.2. As noted in Appendix A, the matrix method is similar to
the paraxial matrix methods of geometric optics. Appendix B i: included for completeness
and contains information pertinent to the PWS representation of f for backscattering from a
fluid shell. Finally, Appendix C describes a technigue which rapidly sutas the infinite
series in f..14 An example of the rapid summation rechnique is compared to the ¢xact

summation of the series where the convergence of the series is explicitly tested.
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3.2 The specular reflection for a fluid shell from geometric ray methods.
Consider an empty spherical shell of inviscid fluid embedded in a fluid (water).
The outer radius of the shell is denoted by a and the inner radius is given by b. The interior
of the fluid shell is taken to be a vacuum. That is, the inner surface at b is a pressure
release surface. The relevant parameters for the water are the sound speed, ¢, and the
density, p. The sound speed and densiry of the fluid are ¢, and p,, respectively. The

scattered pressure in the farfield is

o ikr
4 @
where the harmonic time dependence exp{-iax) has been suppressed 6.9 The wavenumber
of the incident plane wave in water is k = w/c = 2n/A where @ is the angular frequency and
A is the wavelength. The pressure amplitude of the incident plane wave is pg and the
distance from the center of the sphere to an observation point is 7. ‘The scattering amplitude
or form function, f, can be approximately partitioned as f = fy, + f;,, where fsp is a
contribution from a specular reflection and fiy, is a term associated with the possible
excitation of surface guided waves. As stated above, Sec. 3.2 is concerned with a
geometric synthesis of f,.

Figure 1 is a simplified ray diagram for the backscattering of an acoustic piane wave
from an ideal fluid spherical shell.. The plane wave is assumed to be traveling in the
positive z-direction and the origin of the coordinate system is located at the center of the
shell at point O. The z-axis coincides with the line SO. The specular reflection appears to
come from the point S. This point may be referred to as the specular point.15 A ray,

perpendicular to the wavefront, with impact parameter s propagates from point A to point B




——_’-—‘_—
ol )
a
b
-
\ J i/ R/ T
S Vo ViVe o

Fig. 1 The ray diagram for the geometric synthesis of the specular reflection form
function from a vacuum-filled fluid shell. The point § is the vertex of the refracting surface
and O is the origin of a coordinate axis located at the center of the shell. The inner and
outer radii are denoted by b and g, respectively. A ray, infinitesimally close to the z-axis,
S0, is incident on the fluid shell with impact parameter s. The ray AE< is the normal
specular ray; while rays ABDEF and ABDEGHI are the first two internal reflection
contributions. At the points B, E and H partial reflection and/or transmission of a given ray
occurs. The internal rays are totally reflected at all points on the inner su.face r = 4.
Intersections of the projection (dashed lines) of the outgoing rays (B, FE and HI) and the
z-axis define locations of virtual point sources which determine local curvature of the
outgoing wavefront associated with a given ray. The virtial point sources are denoted V,
(n=0, 1, ...) and the local backscattering angles are y,. Superposition of the acoustic
wavefields from the virtual sources in the lirnit y, — O gives an expression for the specular

reflection contribution to the form function for backscatter as described in Sec. 3.2 and

Appendix A.

63




64

on the surface of the shell. Rotation of the ray diagram about the line SO generates all rays
having an infinitesimal impzct parameter s. At B the ray is partially reflected back into the
water and partially transmirted into the fluid shell. The intersection of the reflected ray BC
(dashed line) and the z-axis at V defines the location of a virtual source. For backwards
and near backwards directions, spherical aberration may be neglected and this virtual
source may be modeled as a point-source. With the appropriate amplitude and phase shift,
this virtual point source describes the propagation of the local outgoing wavefront
associated with ray BC. The transmitted ray at B is refracted and propagates along the path
BD. After total internal reflection at D, the ray propagates to E and is, again, partially
rcflected and transmitted. The transmitted ray EF, after refraction, can be projected back to
a second virtual source located at V;. The partial refiection and/cr transmission and
refraction of subsequent rays at the outer surface generates an infinite set of virtual point
sources located at points V,,. Hence, each virtual point source describes the local outgoing
wavefront associated with a specific ray.

For each point V), define the local backscattering angle, vy, as the angle between

the outgoing ray and the z-axis (sec Fig. 1). As the impact parameter approaches zero, the
oes to zero, Hence, ag g - (), the contributio
specular reflection to the backscattered farfield pressure can be expressed as a superposition
of the acoustic fields from the virtual point sources. In particular, the farfield specular
pressure is

- N i2nk, h )
—n € H.r+ H C.e P mi2x
Pop=Py—171 0 IZ‘I n-n J e, 3)

where & = [a - b) is the thickness of the sheli and x = ka is a dimensionless size parameter.

The 2x phase shift in Eq. (3) accounts for the path length difference between a ray
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propagating in water from point S in Fig. 1 to O and back !0 S and a ray which is reflected
in the backward direction at S. The quantity H,, is a geomeiric spreading factor associated
with the nzh virtual source. An expression for Hy, is derived in Append’x A using a
geometric method analogous to the matrix methods of geometric optics. The factor Cp,
accounts for the partial reflection and/or transmission of the ray at each surface (see
Appendix A). The exponential factor within the sumnation is the additional phase delay of
a wave which reverberates n times within the shell before being transmitted in the
backscattered direction. Th - longitudinal wavenumber is k7, = w/c;, =21/Af where A is
the wavelength of the acoustic field in the fluid, Finally, ris the r>flection coefficient for an
acoustic plane wave at normal incidence on a flat liquid-liquid interface. The reflection
coefficient is

P CCL

=L 4
P, +PC )

for the above material parameters.
Using Eqs. (A7) and (A8) for H, and Cj, the contribution of the specular reflection

to the backscattered farfield pressure is

Z aJ , 5)

elk!'
Psp =Po o1 L

where & = 2k h = 2x(c/cL)(1 - b/a). Equation (A6) defines B which depends only on the

relative index of refraction My, = ¢/cy, and the ratio of radii b/e.. Comparison of Eq. (5) with

Eq. (2) reveals that the specular reflection contribution to the backscattered form function is

1-,)°° ngina
=7 7 lemrs e, (6)
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Although Eq. (6) is a geometrical synthesis of the specular reflection form function, it can
be expressed in a manner more easily understood.16 Simple algebraic manipulations allow
one to rewrite Eq. (6). First, the factor [1+ nB]-! is expressed as 1 - nB[1+ nB)-l. With
this substitution, the infinite series in Eq. (6) splits into two series. The summand of the
first of the resulting series is (ref®)" where | rel® | < 1. Comparing this series with the
geometric series demonstrates that the first series is summable and is equivalent to refo{1- r

¢i%]-1, Substitution into Eq. (6) leads to

fop = REZN+ £, (7
where
. 2, & i
a- r2)ela ) - nBem* -i2x
R=r- TreT_, fee = T 441 1+nB [ (82,b)
- n=

Equation (7) is the desired expression for the contribution of the specular reflection to the
backscattered form function. Define p= Rexp(-i2x); the coefficient R is the complex
reflection coefficient for a vacuum-backed flat plate of thickness 4 at normal incidence.”
The phase shift exp(-i2x) is due to the phase reference at the shell's center used in Eq. (2).
Hence f, describes the reflection from a spherical shell where the complex reflectivity is
modeled as that for a flat plate. Consequently, Eq. (8b) accounts for the correction to fp
due to the curvature of the shell within the geometric approximation. At present, an
analytical expression for f;. is not available, however, a rapid summation technique can be
employed to perform the indicated summation (sec Appendix C).

Figures 2 and 3 are comparisons of the exact PWS calculation of | f1 with the

geometrical synthesis as given by Egs. {7) and (8). Appendix B contains the PWS

representation for f and some relevant remarks concerning its computation. These
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Fig.2 The solid curve is the exact PWS computation of the form function for
backscattering for a 4% thick aluminum fluid shell with the parameters listed in Table |
The geometric synthesis of the specular reflection contribution is the dashed line and is
calculated via Eqgs. (7) and (8). The broad minimum at x =~ 340 is the lowest longitudinal

resonance. Without the curvature correction (as discussed in Sec. 3.3), the synthesis

would not model the longitudinal resonance since the synthesis simplifies to [ g | = 1.
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Fig.3 The exact PWS and geometric synthesis are the solid and dashed lines,

re< wectively, These computations are for a 10.2% thick 440c stainless steel fiud shell (see
Tablz1). The broad dip at x = 76.8 corresponds to the first longitudinal resonance. The
oscillatory behavior in the ranges 0 < x < 40 and 77 < x < 100 is presumably attributable to

waves in the fluid shell shedding energy into the water while circumnavigating the shell, as

such contributions were not inciuded in the synthesis.




computations are intended to give insight into the more complicated problem of resonances
in backscattering from elastic shells, so the choice of the fluid parameters corresponds to
elastic material parameters instead of parameters for actual liquids. The parameters for the
fluid shells and surrounding water, used in the various calcuiations, are listed in Table L.
Figure 2 corresponds to an aluminum fluid shell with b/a = 0.96 where the solid line is the
PWS result and the dashed line is the geometrical synthesis. The resonance condition, Eq.
(1), predicts the first thickness resonance occurs at x = 340, Clearly, the broad minimum
in Fig. 2 corresponds to this longitudinal resonance. The syathesis of [ f5p | and 151 via the
PWS are in ¢ cellent agreement forx >> 0.

A 440c stainless steel fluid shell with b/a = 0.838 has its first longitudinal
resonance at x = 76.8 (see Fig. 3). The material parameters of 440c stainless steel and this
particular value of the radii ratic correspond to the properties of a spherical shell studied
extensively in experiments with tone bursts.3 As in Fig. 2, the solid and dashed lines are
for the PWS and geomerrical synthesis, respectively. Again, the broad dip atx = 76.8 in
Fig. 3 is a manifestation of the longitudinal resonance and the synthesis is in good
agreement with‘ the PWS calculation. The oscillatory behavior observed in Fig. 3 is

.

attributable to the symmeiric (or 1) surface guided wave which contributes significantl

v to
the backscattering for x > 76.8. That is, the contribution of f,, to | f1is no longer
negligible for the 440c stainless steel fluid shell. The shell acts like a curved fluid
waveguide which leaks energy back into the surrounding water.17

For fluid shells where pocy, < pc, the resonance condition in Eq. (1) does not
apply. The proper expression for predicting a thickness resonance is kLh = (n +1/2)x, (n =
0, 1, ...). Since internal rays reflected at r = a do not sustain a © phase shift, then the
resonance requirement of the internal rays adding in phase leads to the additional /2.

Although the resonance condition is different for p.cy < pc, Eqs. (7) and (8) still describe
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TABLE 1. Material parameters used in the calculations.

70

Pe CcL Y P
Fluid/Water (g/cm?) (km/s) (km/s) (g/cm’)
aluminum/water 2.70 6.42 1.4825 1.00
440c stainless steel/water 7.84 5.854 1.479 1.00
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the specular reflection contribution to the form function for backscattering. Figure 4is a
comparison of the PWS result and the synthesis using Eqgs. (7) and (8). The fluid shell and
water parameters are the same as the 44Cc stainless steel parameters with b/a = 0,838
except pe = 0.1 g/cm3. The modified condition predicts the first thickness resonance at x =
38.4, i.e. half the resonance value for the high irnpedance case of 76.8. Inspection of Fig.

4 demonstrates that the geometrical mode! agrees with the exact PWS result.

3.3 The importance of curvature to | fsp |
An examination of the curvature correction fr is merited. The significance of the
shell's curvature to the manifestation of thickness resonances can be elucidated by

examining its dependeuce on &z 4. First, it is noted that the flat plate contribution fp,

alone, does not reproduce the longitudinal resonance structure observed iu | £ since
|fp!=1. The approximation | f| =1 f, | does not exhibit structure at values of x which
satisfy Eq. (1). To obtain the minima, the curvature correction £, needs to be included
such that | fI =1 f, + fc |. The resonance condition indicates that! f;,; | should have its first
maximum at kp s = ® when pecp > pc. For a specific fluid, the curvature correction
depends on the two pararﬁctcrs x ard b/a. For the discussion below, the material
parameters are those of 440c stainless steel.

InFig. 5, | fc | is plotted as a function of kph = xM(1 - b/a); where x = 20 or 60 is
held fixed while O < b/a < 1. For fixed x, n/a = 1 corresponds to k4 =0 and as b/a — 0,
kph — xMj. The peaks in Fig. £ are at the expected valae 474 = it and these peaks tend to
be narrow resonances in the variable k7 4. The interpretation is, that for fixed x, shells with
h in the vicinity of A;/2 can support the first thickness resonance. Computations for larger

values of kzh exhibit similar sharp peaks at the higher order longitudinal resonances.
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Fig.4 The parameters here are like Fig. 3 except that p, = 0.1 g/cm3. The condition in
Eq. (1) no longer applies for this case since pecy < pc. The correct resonance condition
becomcs'kLh = (n+ 1/2)7, (n =0,1,...) and predicts a longitudinal resonance at x = 38.4.
Comparison of the PW$ (dashed) and the synthesis (solid) shows & minimum at x = 38.4.

The material parameters for these computations are given in Sec, 3.2,
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Fig. 5 The magnitude of the curvature correction f.(k k) for fixed values of x and
variable b/a. The solid curve is for x = 20 and the dashed line is for » = 60. The sharp
peaks ocrur at the expected value ki a = 1t where the first longitudinal resonance is

supported within the fluid shell. The material properties of the shell correspond to 440c¢

stainless steel,




Thus, a thickness resonance can bie excited within a fluid shel! at fixed x provided his in
the vicinity of an integral nember of Ag/2 .

The resonanice condition still holds if b/a is now held constant aad the frequency of
the incident plane wave is varied. Figure 6 displays | . | where b/a = 0.838 (solid line) or
0.920 (dashed linie) and x = ka == oxa/< is varied. ‘The linear relaiionship between » and &z A
implies that as x increases kb increases. Although, the sharp peaks in Fig. 6 occur at &z h
=T, the interpretation of the physical nature of the peaks is more subtle. Inspection of Fig.
6 reveals that the width of the peaks are comparable; however, the x values at which the
two peaks occur are different. These x are approximately 76.8 and 155 for b/a = 0.538 and
0.920, respectively. From the resonance condition, it is inferred that the : ange of x, for
which a longitudinal resonaunce is excited, is wider for a thin she’l than a thick shell of the
same fluid.  Furthermore, comparison of Figs. 2 and 3 illustrates the width in x is strongly

affected by the parameter M (1 - b/a).

34 Limiting cases for scattering of an acoustic plane wave from an ideal,
fluid shell |
A, UGcattering from a perfectly soft bubble

For the iimiting case b — g, the fluid shell becomes a perfecily soft bubble and Eq.
(7) shouid describe the linear backscattering of an acoustic plane wave from a bubble of
radius ¢ within the geometric limit. For b — g, inspection of Eq. (A6) reveals the constant
B — 0 which Icads to the result that the curvature correction component in Eq. (7) also
vaitishes. In this Limit, it is straightforward 1o show fy, =, = -exp(-i2x). In Sec. 3.2, X,
was found to be the complex reflection coefficient for a vacuum-vacked flet plate. Sinc2
the thickness of the plate is approaching zero, then the plate becomes a water-vacuum

interface. The reflection coefficient for a normal incidence plane wave in water on a
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Fig. 6 The magaitude of f.c(kzh) for fixed values of &/ and variable x. The solid curve
is for b/a = 0.838 and the dashed line is for d/a = 0.920. As in Fig. 5, the narrow peaks

oceur where the firat longitudial rescnance s supported within the fluid shell and the

material parareeters are for 440¢ stainless steei,
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pressure rejease surface is -1. Hence, Eq. (8a) reduces to the expected value and the

backscattered farfield pressure due to the specular reflection becomes

Pop = Py o ¢ ' ©
The upper two curves in Fig. 7 are | f1 and | f5p | where the dashed line is the PWS result
within the limit b — a and the horizontal line is the magnitude of the form function
obtained from the acoustic ray method.!8 Both | fl and | fip | are scaled by b/a = 0.838 in
Fig 7. The reason for this scaling will be discussed in Sec. 3.4B. For x > 20, these
curves become indistinguishable; while for values of x < 20), the PWS$ deviates

substantially from the synthesis. This result may be anticipated since geometrical acoustics

B. Scattering from an impedance-matched fluid spherical shell
[For the scattering from an impedance-matched uid, the refiection coetficient
defined in Eq. (4) is identically zero. That is, pcy, = pc for an impedance-matched fluid

and r= 0. Equation (7) reduces to

=%

fs;) ‘:-iZX;' ( 1“)
N3 +

where B is defined by Eq. (A6). Figure 7 contains computations of | f1 and | fgp | fora
flaid with the sound speed of 440c stainless steel and pe was determined from p, = pM|.
The lower two curves in Fig. 7 are for this limiting case. The dashed line is the exact PWS
result and the horizontal line corresponds to Eq. (19). Although, the two carves are vastly
different for x < 40, for x = 50 the difference between the vay tracing synthesis and the

PWS is less than 7.2%, 1t is anticipated that the agreeoment waill improve as x becomes

large.
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Fig. 7 The unper two curves are for the limiting case of the scattering from a pedfectly
soft bubble. The horizontal line is | £y, | and the dashed line is | f| caiculated via the PWS
result. Both curves have been scaled by 0.838 (see Sec. 3.4B). The lower set of curves is
the limiting case of an irnpedance-raatched fluid (i.e., pCi, = pc). Again, the horizontal
line is | sgp | 2nd the dashed line is the PWS for |, I. The two sets of curves demonstrate
that the synthesis of f, correctly approximates the high-frequency scattering for these

limiting cases.
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Within the impedance-matched fluid case, there is the special case p, = p and ¢7, =
c. That is, the fluid shell is essentially a perfectly soft bubble of radius b. The
denominator of Eq. (10) becomes (1 + B) = a/b and the phase shift oo = 2kh. Equation (10)

in this special case reduces 0 fsp = -(b/a)e b which gives

for the contribution of the specular reflection to the backscattered, farfield pressure,
Cormparison of Egs. (9) and (11) gives the motivation of the scaling of the upper two
curves in Fig. 7 by b/a. That is, Eq. (11) is the expected backscattered pressure from a
bubble of radius # in the geometric limit.
C. Scattering from a fluid sphere

The final limiting case is the backscattering from an ideal fluid sphere.13.18-20 For
a fluid sphere the inner surface has vanished (b — 0) and the derivation of the spreading
factor Hp in Appendix A is no longer applicable. That is, the rays are reflected from the
opposite side of the sphere and hence from a surface with a radius of curvature of -a. To
properly determine the limiting form of whe specular reflection form furction, the refractive
powers given in Eq. (A3) need to be redefined by allowing b — -a. Alternately, the
appropriate form function can be obtaired by taking tiie limit b — -g in Eq. (7). The result
is

(- r2) E _, zn ma .
Xop = (r M - ?ﬂ' e, (12)
Y\ n=1

where U = 2kr h = 4kpa. The magnitude of the contribution of the nth internal ray to Jspis

I(1- 72yr2n-1M: / (2n - ML) Comparizon of Eq. (34) of Ref. 13 with the magnitude of

tae nep internal ray here shows that for the fluid sphexe limit Eq. (7) reduces o thy:




appropriate form. It is noted that the rays here are enumerated consecutive while the
numbering scheme in Ref, 13 is based on the number of internal chords associated with
each ray. Finally, it can be shown that the results here for n = 1 are equivalent to those

given in Appendix C of Ref. 13 for the first axial ray.

3.5 Conclusion

When the incident wave is at a frequency of a resonance, the terms of the series in
Eq. (5) are mutually in-phase: there is constructive interference between all of the internally
reflected backward directed rays. At resonance, the externally reflected ray (which reflects
from § in Fig. 1) interferes either destructively or constructively with the summed
contributions of the internally retlected rays, depending on the sign of r. For the usual case
where r> 0, Eq. (1) gives the resonance condition. Uniike the series for sequential surface
wave contributions, which may be expressed in a Fabry-Perot form,8.7.10 the series in Eq.
(5) does nct generally take on the form of a gcometric series. If the radius of curvature of
the shell is truly negligible in comparison to the thickness, 8 = ¢y #/cb — 0, and the serics
becomes a geometric series. That seiies, when summed, gives the first term of Eq. (7)
since the curvature correction f,. must vanish in that limit. The general form of the series in
Eq. (5) is not that of a geometric series since the spieading factor H, and the virual source
location V,; depenc on n.

The curvature of the shell is essential to the manifestation of longitudinzl resonances
in the madulvs of the backscattering forn function of fluid spherical shells. The specular
reflection form function decompos.s into a contribution attributable to the reflection from a

1at vacuuni-bached tivid plate and a curvature coirection component: fi, = f,, +f.. The

dependence of f;. on krh manifests the resonance condition given in Eq. (1). Finally,
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without the inclusion of f, in the synthesis of fgp, the approximation f = f;, does not
exhibit the longitudinal resonances in | f1.

The verification of the geometrical synthesis of fsp, follows from comparison of
| fsp | with the exact calculation of the PW'S representaiion of | f . The excellent agreement
between | f |and | f5p | demonstrates the correctness of fp especially for x >> 0.
Furthermore, the limiting cases of a perfectly soft bubble, fluid sphere, and impedance-
matched fluid shell supports the claim that Eqs. (7) and (8) correctly describe the high-
frequency specular scattering of sound from an ideal, fluid shell.

A synthesis of the backscattering of an ¢lastic stainless steel sphericai shell,
summarized in Ref, 11, neglected the curvature correction f since the expression for f;¢
was unavailable at the time of that work. The synthesis used the method described in Ref.
6 for the contributions from leaky Lamb waves. It has been subsequently demonstrated
that inclusion of f. improves the synthesis and it is our intent to discuss that in a
subsequent publication since the synthesis of the Lamb wave contributions is beyond the
scope of the present paper.

Though the present analysis has been restricted to backscattering, the ray diagram,
Fig. 1, gives insight into how such rays contribute to the angular scattering pattern for near
backwards directions. The virtual sources Vg, V1, Va, ... lie along the backward axis.
Consider first the case of only two such sources. The interference pattern near the axis is
the well known ring or bull's-eye pattern exhibited in an optical Michelson interferometer
or Newton's ring experiment.2}22 The center of the ring pattern is the backwards
direction. This pattern was previously exhibited in a ray synthesis of backscattering from
fluid spheres in cases where only axial ray contributions were included.!3 (See the curves

labeled | fo + f2 I in Fig. 5 - 7 of Ref. 13.) The central scattering amplitude is maximized

when the outgoing wavefronts (which are Iocally spherical but of different radii) have a
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tangential point of contact on the backward axis. It may be anticipated that the situation
depicted in Fig. 1 yields ring patterns, but with a richer structure due to the additional
virtual sources V3, V3, .... The method of analysis of the present paper and these
comments on the scattering partern should also be applicable to understanding the
consequences of multiple reflections in spherical domes which enclose sonar transducers.

While the analysis given here has been limited to spherical shells, Fig. 1 also
applies to a right circular cylindrical shell. Extension of the analysis to that case should
give the curvature correction to the specular contribution previously modeled by Borovikov
and Veksler.’

This research was supported by the Office of Naval Research,

Appendix A. Determination of H, and €;; from geometrical ray methods
The factor H,, is derived by applying the matrix method of geometric optics to the
acoustic ray representation of the wavefield in water and fluid shell. Each factor is
associated with a virtual point source as discussed in Sec. 3.2, (see Fig.1). In particular,
the ruy associated with the local outgoing wavefront produced by the point source V), will
be called the nthray. The local backscattering angle 7y, is the angle between the nth ray and
the z-axis. The square of the spreading factor in terms of the impact paremeter s and 7, is3

ds

2 | do
dy,

= = ..§..
n dﬂ ]n Yn

»asY >0, (A1)

where [do / dS2], is the spreading factor part of a differential scattering cross section for the
nthray. This is a specialization to Y — U of the more general resuli (do/dQ) = s(siny)

las/ay derivable from flux conservation.?4 The purpose of this appendix is to outline the
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method used to relate the impact parameter to the local backscattering ang'e and, ultimately,
to obtain a simple analytic expression for Hy.

The matrix methods of geometric optics are employed to related s and ,,.21:22
Since the concern here is backscattering, then the paraxial form of the matrix representation
can be used. The conventions as outlined in Refs. 21 and 22 and summarized below are

adopted for the following discussion. The relevant matrices are:

(0] Yo 1 -£ 10
X=| | X,= « | Ri=01, Tpy =5 1 ) (A2)

where X is the matrix defining the initial angle of inclination and displacement from the z-
axis of the incident ray at point B in Fig. 1. The final angle of inclination 7y, and
displacement x;, of the nth ray are represented by X,,. In the paraxial approximation, x,, is
the ray displacement from the z-axis in the vertical plane through vertex S. The matrix X,
applies to the point where the ray exits the shell. The refraction and translation matrices are
R; and T3y, The subscript i = 1, 2 corresponds to the surface r = g, b. For paraxial rays
Tp1 =Ty2 and h= a(l - bla)/M, where My, = c/cy, is the relative index of refraction,

Noting that a prime on R; indicates a reflection at the surface i, the relevant constants are:

__l-ML -2M -®b

» , Bl=— bk p-_ 2 p2 (A3)

17 a

where % represents the special case of the zeroth ray. The & are referred to as the
refractive powers of the ith surface. The trajectory of the nth ray is described by the matrix

equations,

X,=RX, (n =0),
X, =[JM]"JX, (n > 0),

(A4)
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] — ‘l ' '1 . . .
where J = RlT 12R2T21R1 andM = Rl RIR1 . The exponent in Eq. (A4) implies a

repeated product, i.e., JMJM for n = 3. Performing the matrix multipiications leads to the

result,
Yh (2/a)(1 + nB)s
Xn=1x 1= (1+20B)s ) (0 >0), (A3)
where
__1-bfa _ h (AG)

B = bl M5

Equation (A5) contains the desired relationship between s and y,. The analytic form of the
spreading factor, determined by using Eqgs. (A1) and (AS), gives
)

" 1+nB’

n=0,1, ..). (A7)

From inspection of Fig. 1, in the paraxial approximation the distance of the virtual source
V, from O is a - (xu/Yy). From Egs. (AS) and (A7), we find that a - (x,/y,) = H,. Hence,
‘w=> () as n— oo,

The aruplitude factor C,, in Eq. (3) is found by considering the partial reflection
and/or transmission of a ray at each interface. From Fig. 1, itis observed that the zeroth
ray is partially reflected at » = @ without further interaction with an interface. The
appropriate constant is Cp = r, where ris the reflection coefficient defined in Eq. (4). The
ray ABDEF has the araplitude factor C; = tr2¢’. The transmission coefficients ¢t and ¢’ are
for rays which propagate from water into the fluid and from the fluid into water,
respectively. The transmission coefficients are related to the reflection coefficient in Eq. (4)

byt=1-randt' = 1+ r. The reflection coefficient at the inner surface atr = bis r2 = -1,

Using these relationships gives C; = -(/ - r2). The amplitude constant for the ray




ABDEGH]I is C3 = tr2 r'rat’ where 1’ = -ris the reflection coefficient for the ray incident in
the fluid on the fluid-water interface. The constant Cy in terms of ris Cy =-r(1 - r2). In

general, the amplitude constant for the nth ray is

C,=-"1(1-r?) (A8)

Appendix B, The partial wave series representation of f

The PWS representation of the backscattered form function is included for
completeness. This PWS is for the backscattering of an acoustic plane wave from an ideal
fluid spherical shell. The interior of the shell is assumed to be a vacuum. The analysis is

similar to those in Refs. 3 and 19 and gives f as

'zlw

I 1 B (x)
)'(2n + 1) (B1)
S; D, °

where B, and Dy are 3 x 3 determinants obtained from the boundary conditions at r = g and

b. In Appendix B, n denotes the partial-wave index. The elements of the determinants are:

by =B (/) jn(x),

d =-p (c/c ) h (x)
b, = Jn(x), d, = -hf, )(x)
by;=d3 =0, by d12 =Jn(xp);
by3=d;3=np(x), by =dyp =Jn(xy ),
by3 = dps = mlxp)s by, = d3 =Jnly),

P33 = d33 = Mn(yy):

where the parameters are defined as follows: P = p/pg, x = ka, x, = xc/cy. and yi, = xLbla.

The spherical Bessel and Neumann functions and Hankel function of the fi1 st kind of
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integer order are denoted by jp, np, and 4y, respectively. The prime on a function indicates
differentiation with rzspect to tae argument.

The numerical implementation of the PWS requires that the infinite series must be
truncated. A discussion of a choice of the maximum partial-wave index for the truncated

series i given in Ref. 25. The resuit ig

n_ =2+[x+40£13], x <8,
max (BZ)
N =3+ [x+405¢7 ), x28,

where [ ] implies truncation to the nearest integer. The criterion of Eq. (B2) was used for
the PWS computiations shown in Figs. 2 - 4. The number of terms exceeds x and the PWS

converges slowly until # > x.

Appendix C. Rapid summation technique for f..

Since an analytic expression is unavailable at this time for f,., then the infinite series
in Ex;. (8b} must be evaluated. For the material parameters given in Table I, the infinite
series conve: ges fairly {ast, but for other values the series may not converge rapidly. Here,

we investigate a method that may increase the convergence of f,; = R .¢"2* where

% = (a1 —Trz) i nBr"ein® (C1)
n=1

1+nB °’

o7 at least give a good approximation for the infinite sum. First, it is noted that there exists
an integer n = N such that NB > 1 for any B. Now, the summation in Eq. (C1) is split into

two summations,

S=GM)+ Y DB e (€2)
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where § denotes the sum in Eq. (C1) and G(N) is the finite sum of the first N terms.
Shifting the summation index in the second term of Eq. (C2) and dividing the numerator

and denominator by (n + N)B, this sum is rewritten as

" nBr"e™ _ N.iNo M ginc
L) O
n=N+1 n=11+[(n+N)B]j

Since [(n + N)B]-! < 1, then the denominator may be expanded by the binomial expansion.
Neglecting terms of order [(n + V)B]-2 , the summation on the right hand side of Eq. (C3)
is approximated by two infinite series. The first is a geometric series and can be summed
analytically; while the second is the first correction to the rapid surnmation technique.

Equation (C2) becomes

Ni) iN+Do Lo e poing
- r’tte . NeiNa y° _r’e .
S=G(N) + —~———1 @ re l'"l @+ NB (C4)
n=

Finally, the rapid summation technique consists of approximating S by the first two terms
in Eq. (C4). An estimate of the error in implementing the rapid summation technique can
be ascertained by summing the last term in Eq. (C4).

Numerical tests of the above technique indicate that suitable converges occurs for
the choice of N = {B-1} + 10 where {} implies the integer part of B-1. (If B-1 - {B-1} >
0.5, then {} is increased by one.) For example, for a fluid shell with the parameters of
440Qc stainless steel and b/a = 0.838, the constant B = 0.765 which gives {B-1} = 1.
Hence, the rapid summation technique involves the calculation of 12 terms; while directly
summing S requires between 215 to 220 terms for convergence to six decimal places of

precision. Figure Cl1 is a comparison of the results of the rapid summation technique and

the truncated infinite series. Agreement between the two curves is good and it is anticipated

that a small increase in N will give even better agreement.
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Fig. C1 Calculation of | f,; | employing a rapid summation technique. The rapid

summation of | f; | is the solid line. The dashed curve is | f; | where the infinite series in

Eq. (C1) is truncated after sufficient convergence.
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Chapter 4
Ray synthesis of the form function for backscattering from an elastic

spherical shell: Leaky Lamb waves and longitudinal resonances.

Abstract

An acoustic ray analysis is employed in synthesizing the form function for
backscattering, f(8 = =, ka), from a fluid-loaded evacuated elastic spherical shell where £ is
the wavenumber of the incident plane wave and g is the outer radius of the shell. The
synthesis contains a component associated with a specular reflection, f5p, and contributions
from leaky Lamb waves. The contribution jj of the ith leaky Lamb wave is expressible in a
Fabry-Perot resonator form [P. L. Marston, J. Acoust. Soc. Am. 83, 25 - 37, (1988)].
The present synthesis differs from previous results by including the effects of longitudinal
resonances on fgp. A novel ray synthesis of fp, indicates a significant resonance effect near
the condition k. h = nm (n =1, 2, ...). The thickness of the shell is 4 and k; = 0/cy, is the
longitudinal wavenumber where ¢y, is the longitudinal speed of sound in the elastic
material. The ray synthesis demonstrates that the curvature of the shell is essential to the
modeling of longitudinal resonances. A comparison of the ray synthesis for f(ka) with the
exact partal-wave series representation for a 440c stainless steel shell displays the
usefulness of the ray synthesis. Although acoustic ray modeling is generally a high-
frequency technique, the ray synthesis of f(ka) for a 440c stainless steel shell appears to be

applicable for ka as small as 7. Certain anomalies in the synthesis are investigated to better

understand the limitations of the present ray model.




4.1 Introduction

The application of novel ray techriques to canonical scattering problems allows one
to test the integrity and efficiency of ray representations.! Since ray representations of the
interaction of sound with a scatterer give a simple picture of the scattering process, they
merit investigation. Ray representations have the potential to be generalized to non-
canonical problems not easily treated by other methods. Furthermore, the need for
generalized ray theories has been recognized in structural acoustics.S In developing such
ray technigues, comparison of an available exact solution and a ray model for a canonical
problem gives physical insight into regions where the techniques are applicable. This
article investigates a novel ray synthesis of the canonical problem of high-frequency
backscattering from a fluid-loaded evacuated elastic spherical shell. It is anticipated that the
ray synthesis developed here may be generalized to scattering from other smooth convex
elastic objects. Hence, both the success and failure of the present level of ray synthesis
may be instructive for more advanced ray models.

The ray synthesis is based on the application of the principles of the generalized
geometric theory of diffraction.16-8 It has ieen proposed and demonstrated that for
sufficiently high frequencies, the steady-state form function f for backscattering from
elastic spheres can be partitioned into three distinct components. These contributions are an
ordinary specular reflection, transmitted bulk waves, and surface guided elastic waves. In
the development of a ray synthesis of f for an elastic shell, the ordinary specular reflection
and transmitted bulk wave contributions are grouped to form a generalized specular
reflection component denoted by fsp. The present ray synthesis of fs, differs from a
previous ray model®-!! by introducing a curvature correction, f;¢. Inclusion of f; in the

synthesis shows that fgp can be significantly affected near longitudinal resonances within

the shell. The conditions for excitation of longitudinal resonances are




94

kLh = nvx, (I‘l = 1, 2, ), (la)
k h=(+1/2)r, (n=0,1,..), (1b)

where h = (a - b) is the thickness of the shell. Equation (1a) corresponds to the usual case
(the one considered here) where the acoustic impedance of the elastic material pcy is
greater than the impedance of the surrounding water pc. When p.cy is less than pc then
Eq. (1b) is the appropriate condition. These resonance conditions are obtained from the
requirement of constructive interference of consecutive internally reflected rays upon
transmission back into the water. Finally, for high-frequency scattering from the elastic
shell considered here, the relevant surface guided elastic waves are leaky Lamb waves.

The steady-state scattered pressure in the farfield from an evacuated elastic spherical
shell has the forin!2

—nn af _ikr
ps_po'z_;el ’ (2)

where py is the pressure amplitude of the incident acoustic plane wave. The wavenumber &
of the incident plane wave is defined by k = w/c where © is the angular frequency and ¢ is
the speed of sound in water. The harmonic time dependence exp(-iw¢) has been
suppressed. The outer radius of the spherical shell is @ and r is the distance from the center
of the shell to some distant observation point. The complex scattering amplitude or form

function in the backscattered direction has the exact partial-wave series representation!2

B,(x)
D, (x) (3)

_2 N gy
f-—i;(-zo(-l) @n + 1)
n=

where x = ka = 2ra/A and A is the wavelength of the incident plane wave. The functions
Bp(x) and Dp(x) are 5 x 5 determinants obtained by satisfying the appropriate boundary

conditions.12 The elements of these determinants, which are complicated expressions of

spherical Bessel functions and spherical Hankel functions of the first kind, are listed in




Ref. 12. The material parameters for the elastic shell are the longitudinal sound speed cy,
the shear or transverse sound speed ¢; and the density p, while the density of water is
denoted by p.

The organization of this article is as follows. In Sec. 4.2.A, the ray synthcsis of an
individual leaky Lamb wave contribution, fj, to the form function for backscattering is
developed. The expression for f; is cast in a form analogous to a Fabry-Perot resonator,
Section 4.2.B summarizes a ray synthesis of fsp and demonstrates that fs, can be separated
into a term associated with reflection from a vacuum-backed fit elastic plate and a
curvature dependent correction. Using parameters corresponding to a 440c stainless steel
shell studied in Ref, 12, the results of the ray syntnesis and exact partial-wave series are
compared in Secs. 4.3 and 4.4, Since a longitudinal resonance does not significantly affect
the ranges 0 < x < 60 and 80 < x < 100, the computations in Sec. 4.3 consider these
regions. The presence of a longitudinal resonance in the range 60 < x < 80 complicates the
analysis and this region is investigated in more detail in Sec.4.4. A general discussion and
concluding remarks are contained in section 4.5. Appendix A contains a discussion of the
racdiation damping parameter and normalized phase velociry for each leaky Lamb wave
contribution. These leaky Lamb wave parameters are essential to the ray synthesis
calculations and are included for completeness. The first antisymmetric and symmetric
leaky Lamb wave contributions are isolated in Appendix B. The Fabry-Perot form of fj is
investigated and a discussion of off-resonance contributions from a Lamb wave to the form
function for backscattering is presented. Finally, Appendix C studies a peak near x =71 in
the ray synthesis of f which is not contained in the exaci partial-wave series result. The

discussion in Appendix C is based in part on a localization principle analysis of irividual

partial waves similar to that used by van de Hulst for light scattering.13




4.2, Ray synthesis of the form function for backscattering
A. Leaky Lamb wave contributions

The methodology of the generalized geometrical theory of diffraction!7 is applied
to the backscattering of a plane wave from a hollow elastic spherical shell. For the
canonical problem of high-frequency scattering from elastic shells, leaky Lamb waves are
the relevant surface guided elastic waves which produce the resonance structure observed
in the form function for backscattering. (In Sec. 4.3 below, it is demonstrated that the ray
synthesis works well down to x = 7 for the particular shell considered. For smaller x the
contributions of subsonic!# Lamb and Franz-type waves may be significant.) The ray
diagram in Fig. 1 provides a fundamental illustration of the ray synthesis of f;. This
diagram is similar to those discussed in Refs. 1, 6, 12, and 15. The diagram represents an
elastic spherical shell of outer radius a and inner radius b situated such that the shell's
center C coincides with the origin of the coordinate axis. A plane wave propagates in the
positive z-direction along the ray AB in Fig. 1. At point B the acoustic wavefield in water
couples to the shell and launches a leaky Lamb wave, The Lamb wave is guided by the
shell along the arc BB’ continuously re-radiating energy into the water. At B’, the radiated
energy is backscattered aléng the ray B'A". (Physically, B and B’ actually locate surface
regions where the interaction takes place. The width of the regions correspond to the size
of Fresnel zones.19) The leaky Lamb wave repeatedly circumnavigates the shell radiating
energy in the backscattering direction with each circumnavigation. The points B and B’ are

obtained from the phase velocity trace-matching condition,1:12

Bl = arcsin(c/c 1)’ ¢ 2, A

where 0 is the local angle of incidence and c; is the phase velocity of the leaky Lamb wave.

The phase velocity is taken to be the phase velocity of the leaky Lamb wave along the outer

surface of the shell'7 and is assumed to be supersonic.
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Exit Plane

.

Fig. 1 A ray diagram for a contribution from a leaky Lamb wave to the form furction
for backscattering from 2n elastic spherical shell of outer radius @ and inner radius . A
plane wave represented by the ray AB couples to shell at B launching a leaky Lamb wave.
The Lamb wave is guided by the shell through a polar caustic at C"” to B". At B the
radiated energy is shed in the backscattered direction along the ray B’A’. The points B and
B’ are determined from Eq. (4) where 0; is the local angle of incidence. The Lamb wave
continues to circumnavigate the shell shedding some energy at B’ with each passage. The
point C’is the specular point and the location of a second polar caustic. For backwards
and near backwards scati=ring the rays B’A’ and DF| appear to diverge from a virtual
source located at point £;. When the diagram is rotated about C°C, the point F traces out a
virtual ring-like source. The vertical line through C” represents an exit plane for an

outgoing toroidal wavefront associated with the ring-like source.
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The form of an individual leaky wave contribution to the backscattering amplitude is

obtained by summing the backscattering amplitudes for each circumnavigation, 1,7

in, 2(n-0,)B, € . 2nmpP, i2nmxc/c
f,=-Ge e ! ’Ze‘m”e ‘e !

m=90

)

The geometrical phase shift 1; = [2x(c/cp) (i - 6)) - 2xcos(0;) - 7/2] accounts for ihe phase.
difference between a Lamb wave ];)ropagating along the arc BB’ and a wave in water
propagating from C’ to C and back to C’ as if the shell were not present. The ©/2 term in
T\ is associated with the propagation of the leaky Lamb wave through the polar caustic at
C". The additional phase shift, 2ruec/cy, is attributable to repeated circumnavigation of the
leaky Lamb wave about the shell. The © phase shift results from the polar caustics at C”
and C”. The radiation damping of the leaky Lamb wave is characterized by the radiation
damping parameter {3; with units of Np/rad. The factor exp[-2(x - 6; )P;] is the radiation
damping of the partial circumnavigation of the Lamb wave along BB’; while exp(-2nf3))
accounts for the additional radiation damping due to repeated circumnavigation. The
efficiency of the coupling between the wavefield in water and the leaky Lamb wave at the
points B and B’ is characterized by a complex coupling coefficient G;. Inspection of the
summation in Eq. (5) shows that it is a geometric series and Eq. (5) reduces to

-2rB, i2mrxc/c,
e h.

in, 2n-0
fl=[-GIem’c 4 I)Bl]/[1+c (6)

The form of the denominator in Eq. (6) is that of a Fabry-Perot resonator.l:7 Appendix B
contains a discussion of | f; | for the lowest antisymmetric and symmetric leaky Lamb
waves. Finally, Eq. (6) is the ray synthesis of the contribution of an individual leaky Lamb
wave to the form function for backscattering.

Williams and Marston® applied the Sommerfeld-Watson transformation to the

partial-wave series representation of f for backscattering from a solid elastic sphere. From

L et e .- A ;2 . - . - ..
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their analysis a complicated expression for the complex coupling coefficient G; was
obtained (see Eq. (28) of Ref. 6). Subsequently, Marston! developed an approximation

for G; which gives explicit dependence of | G; | on the leaky Lamb wave parameters [3; and
ci/c. The approximation can be expressed as
i9,

G, = 81tBl (cfepye 7, 1))
where ¢; denotes the phase of G; and it may be argued that ¢; = O for elastic spheres or
shells.11,18 For the computations of the ray synthesis of | f| in Secs. 4.3 and 4.4, ¢ for
the Ith leaky Lamb wave is taken to be identically equal to zero. Equation (7) was
employed in the modeling of backwards and near backwards scattering of short tone bursts
from a 440c stainless steel shell in experiments discussed in Ref. 12. Further confirmation
of the applicability of Eq. (7) to the backscattering from elastic spherical shells is
demonstrated below in Secs. 4.3 and 4.4. An alternative derivation of Eq. (7) with ¢; =0
has been given for a thin fluid-loaded spherical shell.2

Consider again the ray diagram in Fig. 1. For an observation point on the negative
z-axis a finite distance from C , the ray that reaches the observation point is DF; not ray
B’A’. It can be argued that the appropriate modifications to the ray synthesis of f7 are
negligible provided the observation point is sufficiently distant.! The intersection of rays
B’A’ and DF at the point F} locates a virtual source. The point Fj is situated in the vertical
plane perpendicular to the z-axis through the point C.1° Yrom the symmetry of the shell, it
is apparent that the virtual source is ring-like and has a radius b; = a sin(9)). Hence, the
backwards and near backwards contribution of a leaky Lamb wave may be modeled by a
virtual ring-like source. The local outgoing wavefront in the vertical plane through point C*
from a ring-like source has a toroidal shape. A toroidal wavefront is associated with the

phenomena of axial focusing or glory scattering,13:19-22 Axial focusing of the

N
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backscattering from solid elastic spheres!9:20 and elastic spherical shells12 has been
observed.
B. Specular reflection contribution

The specular reflection contribution fip, in the form function for backscattering
from an evacuated elastic spherical shell can be approximated by ray methods. Figure 2
shows a simplified ray diagram which facilitates the ray synthesis. The diagram is similar
to the one discussed in Ref. 23. The orientation of the shell with respect 1o the incident
plane wave is the same as in Fig. 1 where the points § and O in Fig. 2 correspond to C*
and C in Fig. 1, respectively. The specular reflection appears to originate at § and is often
referred to as the specular point.24 The incident rays which significantly affect fsp lie close
to the z-axis. Consider the incident ray AB in Fig. 2 with infinitesimal impact parameter s.
Rotation of the figure about the line SO generates all the incident rays with impact
parameter 5. At point B the ray is partially reflected back into the water and partially
transmitted into the elastic shell. The intersection of the reflected ray BC with the axis SO
at Vp cefines the location of a virtual source. For backwards and near backwards
scattering, spherical aberration may be neglected and the virtual source can be described as
a point source. Since the impact parameter s is assumed small, then the angle between the
incident ray and the outward unit normal at point B is infinitesimal. Hence,the ray AB is
approximately at normal incidence with the shell and the energy transmitted into the shell
will produce a (bulk) longitudinal wave. To simplify the ray synthesis, the weak mode
conversion between a longitudinal wave and a transverse (shear) wave upon reflection at a
surface is neglected since the angle of incidence is infinitesimal. The transmitted ray at B is
refracted and propagates along BD. At D (again neglecting mode conversion), total internal

reflection occurs and the longitudinal wave propagates along DE. The ray is again partially

reflected and transmitted at E. Projection of the transmitted ray after refraction at E back to
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Fig. 2 The ray diagram for the specular reflection from an evacuated elastic spherical
shell of outer radius @ and inner radius b. The point S is the vertex of the refracting surface
and O is the origin of a coordinate axis located at the center of the shell. The ray AB
infinitesimally close to the z-axis is incident on the shell with impact parameter s. The ray
ABC is the ordinary specular ray; while ABDEF and ABDEGHI are the first two internal
specular reflection contributions. At r = b, the rays are totally reflected and the rays are
partially reflected and/or transmitted at the water-shell interface. Intersection of the
projection (dashed lines) of the outgoing rays and the z-axis define locations of virtual point
sources, V,, which aescribe local curvature of the wavefront associated with each ray. The
specular reflection contribution to the form function: for backscattering is determined from a

superposition of the wavefields from the virtual sources.
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the z-axis gives the location of a second virtual point source V1. By continuing to trace he
ray trajectories of the higher internal reflections an infinite set of virtual point source
locations Vj on the z-axis can be generated.

Each virtual point source V), describes the propagation of a local outgoing
wavefront associated with the ath ray. In the limit s — 0, the specular reflection
contribution to the farfield pressure is a superposition of the acoustic wavefields froim the

virtual point sources,
N i2nk h
p Y HCe ®
Psp=Pp 7 e~ ’

where &1, = w/cy. The 2x phase shift accounts for the path length difference between a ray
propagating in water from S to O aud back to § and a ray which is backscattered at S. The
additional phase delay within the summation comes from a longitudinal wave which
reverberates n times within the shell before being transmitted in the backscatiered direction.
The amplitude of the nth virtual point source is H,Cp, where Hy, represents a geometric
divergence factor and Cp, accounts for the cumulative effects of partial reflection and/or
transmission. By applying an acoustic ray analysis of longitudinal resonances within a

fluid shell the following expressions for H, and C,, were obtained?3

y o (@2)
Mo =T rap ©)

and

C0=r,

C.=-r"11-+r2), (>0),

n

(10)

where B = (cLh/ch) and r= [pecL, - pc)/Ipect, + pc]l. The constant B depends on only the

normalized longitudinal sound speed of the elastic material and the radii of curvature of the




£

-

103

inner and outer surfaces. The reflection coefficient for the scattering of an acoustic plane
wave at normal incidence from an interface between water and an elastic half-space is .
After substitution of Egs. (9) and (10) into Eq. (8), comparison with Eq. (2) gives
an expression for f;, which depends on the geometric and material paramcters of the shell,
oo 12nk h

fp={ 7" X, (11)

Although Eq. {11) is aray synthesis of the contribution of the specular reflection to the
form function for backscattering, it can be manipulated such that each resuling term has a
simple physical interpretation. With the replacemem of [1+rB]-! by 1 - nB[1+nB] '}, the
summation in Eq. (11) can be split into two summations. The first summation, via a

geommeiric series, has the analytic form rexp(iZkp ) 1-reap(iZk ). Heice, f, sp DECOMES

_ -i2x
fsp =Re" "+ 1, (12)
where
i2k. h
_ (1 2)6 L
R 1 (13)
1-re
and
12nk h
A-) X nBle I
¢ Z 1+nB e, (14)

Define fp = R exp(-i2x) where Ris the complex reflection coefficicn: associated with the
scattering of a normal incidence plane wave from a vacuum-backed flat elastic plate of
thickness 4.2526 Hence, f, describes the reflection from an elastic spherical shell where

the complex reflectivity is modeizd as that for 4 flat elastic plate. Consequentiy, the
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influence of the curvature of the shell on fgp within the paraxial approximation must be
contained in Eq. (14). At present a simple analyric expression for f¢ is unavailable, but a
rapid summation technique has been described and implemented in Appendix C of Ref. 23.

Figure 3 demonstrates the importance of f; to the ray synthesis of | fsp I. The
material and geometric parameters used in the computation correspond to the parameters of
a 440c stainless steel shell studied in Ref. 12. The values of these parameters are as
follow: cr, = 5.854 km/s, cs = 3.150 km/s, pe = 7.84 g/cm3 and b/a = 0.838 for the elastic
shell; ¢ = 1.479 km/s and p = 1.00 g/cm3 for water. The resonance condition given in Eq.
(1a) predicts that the a longitudinal resonance should occur at x7 g = 76.8. Clearly, the
minimum observed in Fig. 3 at x =~ 77 is a manifestation of this longitudinal resonance. It
is noted that the approximation fs, ~ fp is not sufficient to produce the observed minimum.
It is relatively simple to demonstrate that | f5 | = 1 for all x. The importance of f¢. in the
synthesis of | f1 for a 440c stainless steel shell will be examined in more detailed below in
Sec. 4.4. Hence, the curvature of the shell appears to be intimately related to the presence
of a longitudinal resonance in the specular contribution to the form function for

backscattering.

4,.3. Comparison of the ray synthesis and exact calculation of | f| for x
outside the region of a longitudinal resonance

To facilitate a discussion of a comparison between the ray synthesis and the exact
partial-wave series computation of | f1, the range 0 < x < 100 is split into five intervals. By
displaying these smaller regions, the finer details of the high Q resonance structure caused
by sume of the leaky Lamb wave contributions are more easily resolved. The range 60 <x

< 80 is examined in more detail in Sec. 4.4 because the presence of a longitudinal
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Fig. 3 The modulus of specular reflection f;, from an elastic spherical shell as defined
by Eqs. (12) - (14). The broad minimum at x =~ 77 is a manifestation of a longitudinal
resonance. The resonance condition in Eq. (1a) predicts a longitudinal resonance occurs at

xLr =76.8. Asdiscussed in 4.2.B, if the curvature correction component f.. were omitted

in Eq. (12), then | fop | = 1 f51 =1 for all x.

_
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resonance obfuscates the cause of certain resonance features. In the calculations below,

unless otherwise stated, the ray synthesis is
fray=f8p+zf1=fp+fcc+zf’ (15)
l {

where the summation in Eq. (15) is over the possible leaky Lamb wave contributions. The
material of the elastic shell is 440c stairless steel with the parameters listed above in Sec.
4.2.B.

The computation of the partial-wave series for the form function for backscattering
requires the truncation of the infinite summation in Eq. (3). The minimum number of terms
(or maximum partial-wave index) nju4; retained for sufficient convergence of fpws exceeds
x. The following criterion was tested and determined to ensure adequate convergence of

the series for the shell considered:

nmax=2+[x+4.0x1/3], X <8,

(15)

Npax =3+ [x+ 4.05x1/3 ], x28,

where the square brackets imply truncation to the nearest integer. For very thin shells
caution in the use of Eq. (16) for determining n,,q, may be required since subsonic guided
wave contributions can be significant. From the Iocalization principle subsonic guided
waves are associated with partial waves having n > x. Discussions concerning the choice
of Eq. (16) are contained in Refs. 15 and 23. Secondly, to ensure adequate resolution of
the high Q resonance structure, the increment Ax needs to be small. For the computations
of | fpws | shown below Ax = 0.01 except in the vicinity of the very narrow resonance
structure caused by the sg leaky Lamb wave (see Appendix B). Near these resonances, it
was necessary to take steps in Ax as small as 0.00001. Hence, it is evident from Eq. (16)
and the small size of Ax that the partial-wave representation of fin high-frequency

backscattering calculations can be numerically intensive.
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The relevant leaky Lamb waves are analogous to Lamb waves that can be excited on
a flat elastic plate of thickness 4 in vacuum,27:28 Using the terminology associated with the
flat plate results, the leaky Lamb waves excited on the shell for 0 < x < 100 are designated
ap and a; for antisymmetric or flexural Lamb waves and so, 51, and s for symmetric or
dilatational Lamb waves. As the frequency increases, higher Lamb wave resonanccs can
couple with the acoustic wavefield in water and these higher modes can easily be inciuded
in the synthesis. The computation of Eq. (15) requires the parameters [;(x) and ¢;(x)/c for
the Ith leaky Lamb wave. These parameters can be determined by extending certain results
of the Sommerfeld-Watson transformation analysis of the backscattering from a solid
elastic sphere.57 The pertinent results from this analysis are surumarized in Appendix A
and Py(x) and ¢j(x)/c for the Ith leaky Lamb wave are examined. The values of ;(x) and
ci(x)/c depicted in Figs. Al and A2 are employed in the present calculations. Finally, Eqs.
(6) and (12) - (14) are the expressions necessary for the calculation of | fray i,

Figure 4 displays the comparison of | fpwg | and | fray | where the dashed curve
corresponds to the exact partial-wave representation and the solid line is the ray synthesis
result. In the interval 0 <x <20, Fig. 4a, the shell can support both the a and s leaky
Lamb waves. The ray synthesis, Eq. (15), is truncated at x = 7 since the phase velocity for
the ap leaky Lamb wave becomes subsonic. From inspection of Eqg. (4), the present ray
synthesis is implicitly a supersonic theory. Comparing Figs. 4a, B1, and B2 demonstrates
that the broad resonance structure is attributable to the 6, mode; while the sg Lamb wave is
responsible for the sharp (high Q) resonance features at x = 10, 14, and 18. It is
noteworthy that the high-frequency ray synthesis gives fairly good agreement even though
x is not very large. To accurately model the exact | fpws | for x <7, both the subsonic
portion of the ap Lamb wave and Franz-type (creeping) waves would need to be

considered. Figure 4b shows the range 20 < x < 40 where the relevant leaky Lamb wave
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contributions are ag and sg. Again, the broad resonance structure is due to ag and the sharp
features are associated with the so Lamb wave. The agreement between the synthesis and
exact solution is excellent. Finally, Fig. 4c compares | fpws | and | fray | where the next
possible leaky Lamb wave can contribute to the backscattering. This new contribution is
the aj leaky Lamb wave which appears to have a cutoff frequency near x = 41. Inclusion
of the ag, s¢, and a; leaky Lamb waves not only reproduces all the resonance features, but
the agreement between the ray synthesis and the exact partial-wave series representation is
excellent.

The range 80 < x < 100 is shown in Fig.5. The relevant contributions to the ray
synthesis contained in Fig. 5a are ap, ay, sg, and s1 as well as the specular reflection.
Although the ray synthesis seems to reproduce the resonance features in | fpws |, some
differences are evident. For x > 83 the ray synthesis can be improved by acluding the 52
leaky Lamb wave which appears to have a cutoff frequency near x = 83. By including the
s7 leaky Lamb wave contribution in the synthesis of Fig. 5b, the exact result is modeled
more accurately by i fray | particularly for x > 88. The difference between | fray | and | fpws |
for x < 85 might be associated with a longitudinal resonance discussed in Sec. 4.4. The
broad minimum in the specular reflection contribution shown in Fig. 3 caused by a
longitudinal resonance at x; g ~ 76.8 may significantly affect the form function for x < 85.
Inspection of Fig. 5 demonstrates, however, that the geometric ray synthesis contains the

resonance structure caused by various leaky Lamb wave contributions.

4.4. Form function in the vicinity of a longitudinal resonance.

The resonance structure in | fpws | for the interval 60 < x < 80 is perhaps the

most difficult region to interpret physically. Within this range, a longitudinal resonance can

be
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Fig. 4 The dashed line is the exact partial-wave representation, | fpws |, and the solid
line is the ray synthesis, | fray | for the stainless steel shell considered with b/a = 0.838.
The pertinent leaky Lamb waves included in each synthesis are: (a) ag and sg; (b) ap and
50; (¢) ag, S, and ay. In (a) the ray synthesis is truncated below x =7 since ap becomes
subsonic and the ray synthesis is implicitly a supersonic theory. The agreement between
the high-frernuency ray synthesis and the exact results indicate that the ray synthesis may be

useful for non-canonical scattering problems,

N
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Fig. 5 The exact | fpws | and | fray | are the dashed and solid curves, respectively. In
(a) the relevant leaky Lamb wave contributions are: ag, a3, sg, and s1; while in (b) the
leaky Lamb waves are: ag, ay, 50, 51, and s3. The specular reflection employed in | fray | is
given by Egs. (12) - (14). The importance of these figures is that the ray synthesis

accurately models the resonance structure in the exact result and the inclusion of the 52

leaky Lamb wave in (b) improves the synthesis.
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supported by the elastic shell. From Eq. (1a), the longitudinal resonance is predicted to
occur at X7 g = 76.8. It is observed in Fig. 3 that the longitudinal resonance can affect a
relatively broad range of x in the vicinity of x;g. Also, within this region of x the 440c
stainless steel shell can support the ag, a1, sg, and s leaky Lamb waves. Of these Lamb
waves, the physical nature of the s; Lamb wave contribution to | fray | becomes difficult to
understand. The 57 Lamb wave on a 440c stainless steel flat plate of thickness A in vacuum
has a cutoff frequency corresponding to29 x = 76.8, but the dispersion curve in Fig. A2 for
51 does not demenstrate an abrupt cutoff. (The dispersion. curve near a cutoff should be
particularly sensitive to the fluid loading.) Furthermore, the group velocity for the s leaky
Lamb wave becomes negative for x < 71 (see Appendix A). As discussed below, the
presence of a longitudinal resonance and the behavior of the s; leaky L.amb wave forx <71
obfuscates a physical interpretatio;l of the scattering process.

Figure 6a compares | fpws | and | fay | where the curvature correction f is omitted
in Eq. (15). The ray synthesis works well for x < 70, but for x > 70 the syathesis fails to
model the exact result. In particular, in the vicinity of x = 76.8 the ray syniies:s gives a
completely erroneous representation of the form function for backscatiering. However, it
is evident from Fig. 6a that the positions of the sharp resonance features caused by the
presence of leaky Lamb waves seem to be correctly predicted. Figure 6b compares | fray |
and | fpws |, but f;. is now included in the synthesis. It i immediately evident that the
inclusion of the curvature correction improves the synthesis. Although| fray | does not fully
replicate | fpws |, Fig. 6b indicates that the contribution from a longitudinal resonance (as
presently modeled) is an important contribution in the ¢xact result. Furthermore, the ray
method employed in determining an expression for fsp necessarily includes the influence of

the shell's curvature explicitly in fe.

An examination of the absolute error may give some insight into the cause of the




Fig .6a

1
o
Fig. 6b 3r
2 =

1

0 hl
60
Fig. 6

Curvature correction fcc is omitted in Eq. (15). The agreement between | fray | (solid line)

and | fpws | (dashed line) is good for x < 70, but | fray | fails 1o model | fpws | for x > 70.

Inclusion of £, in ! Jray lin (b) replicates [ fpws | for x < 70 and x > 74, but the agreement

above x =74 is marginal. At present, the cause of the anomaly in | fray | nearx =71 is not
fully understood (see Secs. 4.4 and 4.5 and Appendix C).

The relevant leaky Lamb wave contributions are ag, aj, 50, and s1. In (a) the
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discrepancy between | fpws | and | fray | near x = 71. A measure of the absolute error in the
ray synthesis is given by Ej = | fpws - fray |, j = 1, 2. Figure 7 contains three curves. The
solid line is E1 where the curvature correction in Eq. (15) has been omitted. The short-
dashed line is E2 when f; is included in frgy. The long-dashed line corresponds to | fe. |
where Eq. (14) is employed. The reduction in Ej when f; is included is given roughly by |
Jee . The cause of the peak near x = 76.8 in E7 is due to the omission of f¢c in fr4y and the
peak near x = 71 must not be related exclusively to a longitudinal resonance.

The identification of specific resonance features associated with the Ith leaky Lamb
wave can be achieved by comparing | f; | in Figs. B1 and B2 with | fpws | in Fig, 6a. The
narrow resonance structure (at x = 62.5, 65.0, 67.5, 69.8, 72.0, 74.2, 76.3, and 78.7) is
a result of the @) leaky Lamb wave contribution. The broad structure is a combination of
the ap and 59 leaky Lamb waves. Since the widths of the ag and s resonances are fairly
broad, it is difficult to unambiguously identify a feature in | fpws | with either Lamb wave.
However, it is apparent from the magnitude of each contribution that neither the ag nor the
50 leaky Lamb wave is responsible for the significant difference between | fray | and | fpws |
nearx =71, Thé final contribution to the ray synthesis is the 51 leaky Lamb wave. The
Fabry-Perot representation as developed in Sec. 4.2.A accounts for the partial
circumnavigation and all subsequent circumnavigations of a Lamb wave about the shell.
Furthermore, inspection of Eq. (6) and Fig. A1 demonstrates that the large radiation
damping of the 51 Lamb wave effectively makes its contribution to | fmy | negligible for x <
72. Ttis noteworthy that our ray model!5 of the saucture in the forward scattering
amplitude (and the total scattering cross via the optical theorem) for the same shell has no

anomalies near either x = 71 or 76.8. Hence, the deficiency in the present modei does not

affect the forward scattering,.




Fig. 7 The absolute error between the ray synthesis and the exact partial-wave series is
givenby E; =1 fpws - fray |, j = 1, 2. The solid line is £y where f¢¢ in Eq. (15) has been
omitted. The short-dashed line, E7, includes the effects of fz; on fray. For comparison, the
long-dashed line is | f¢ I. The inclusion of the curvature correction in frzy accounts for the
presence of a longitudinal resonance at x; g = 76.8. Furthermore, the longitudinal

resonance is not responsible for the anomaly near x = 71.
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Inspection of Figs. 1 and A2 suggests a possible cause of the anomalous behavior
near x=71. As xis decreased to x; g =76.8 and below, ¢j/c becomes large for the 51
Lamb wave. As noted above, the frequency for which x = x; g corresponds to the cutoff
frequency of the 51 mode for the corresponding flat plate in vacuum of the same thickness #
=g - b. Hence, the trace velocity-matching angle 6; becomes small and the s; wave may
radiate nearly backwards directly. This corresponds to the radiation along ray B"A” (with
B and B’ shifted closer to £’ than illusirated in Fig. 1). Such radiation was not included in
Eq. (15) or elsewhere in the present analysis. It is plausible that such rays can contribute to
backscattering even without being backward directed if the rays intercept the Fresnel
volume16 of a backwards directed ray. The essential concept is that rays in effect occupy a
region of space (the Fresnel volume) and that sound radiated primarily in some direction
(say along B"A") can contribute to the scattering in other directions (e.g., the backwards
axis). Further support for this mechanism is evident from inspection of Fig. Al which
shows that f3; for I = 5] is very large for x in the region of interest. The large f; indicates
the 51 leaky Lamb wave is strongly coupled to the acoustic field near the shell, thus
enhancing the radiation in the general direction of the ray reflected with a local angle of
incidence = 0. —

While the aforementioned mechanism for the anomaly near x = 71 has not been
guantitatively rodeled, additional support can be seen by inspection of the group velocity
plotted in Fig. A3 for the / = s mode of this shell. This mode is seen to have a negative
group velocity for x <71 when computed by the Watson transforta methodology. This
suggests that energy can be radiated back towazds the source without circumnavigating the
shell. It can be argued by inspection of Egs. (39) and (40) of Ref. 1 that the final

approximation for Gy, Eq. (7), may break down if cg is negative. The group velocity

anomaly is further discussed in Appendix A.
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The influence of a longitudinal resonance on the form function has also been seen
for a set of material parameters for an aluminum shell. Figure 8 shows | fpws ! and | fsp |
where the parameters are: ¢y = 6.42 km/s, cg = 3.04 kmfs, pe = 2.70 glem3, ¢ = 1.4825
km/s, and p = 1.00 g/cm3. The thickness of the shell is (4/a) = (1 - b/a) = 0.04. The solid
line in Fig. 3 is | fpws | and the dashed line is | fgp . From Eq. (1a), a longitudinal
resonance is predicted to occur at x.g = 340. Clearly, the dip near x = 340 corresponds to
the presence of the longitudinal resonance. Although, a detailed analysis of the surface
guided elastic wave contributions for the aluminum shell h.as not been carried out,
presumably the calculated resonance structure is a result of leaky Lamb waves. The large
peak near x = 300 may be a manifestation of prompt radiation along path B“A" as noted

above.

4.5 Discussion and conclusion
The canonical problem of the backscattering of an acoustic plane wave from an
elastic spherical shell has been re-examined by novel ray techniques. A form function for

backscattering including leaky Lamb waves and a specular reflection has been developed
and tested, The Fabry-Perot expression in Eq, (6) for a leaky Lamb wave contribution had
previously been established®-12 and the subsequent approximation of G; by Eq. (7) had
been verified for backscattering from spheres and shells.18 The calculations presented here
give further verification of the applicability of Egs. (6) and (7) in describing leaky Lamb
wave contributions to backscattering. The ray synthesis of the specular reflection is
composed of a component associated with reflection from a flat elastic plate of a normal

incidence plane wave and a novel curvature correction contribution fc. A comparison of

the partial-wave representation and ray synthesis of the form function in Sec. 4.3

demonstrated regions of x where the exact result and synthesis were in excellent agreement.
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Fig. 8 For an aluminum shell with b/fa = 0.96 and cf, = 6.42 km/s, Eq. (1a) predicts a
longitudinal resonance at x; g = 340. The solid line is the exact | fpyws | and ! fsp!1s the
dashed line. The minimum in both | fpws | and | fsp | at x/g is a manifestation of this

longitudinal resonance.
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It is shown in Sec. 4.4 that inciusi;)n of fec in fray accounted for the resonance structure in
the form function caused by a longitudinal resonance. In Sec. 4.4, a comparison of the
exact and synthesized results illustrated that th2 present ray model breaks down in a range
of x where the s1 leaky Lamb wave was found to have a negative group velocity. Finally,
although a ray model is a high-frequency approximation, the synthesis displayed here ror a
44(0c stainless steel shell was applicable down to x = 7.

While the inclusion of f;. in Eq. (15) (and Fig. 8b) improves the synthesis in the
vicinity of x = xzg, it is noteworthy that the use of f. in Eq. (15) tends to increase the
discrepancy between | fpws [ and | frgy | for x < 12. Figure 9 compares | fpws ! and | fray |
where f;. = 01in Eq. (15). That is, the specular reflection contribution to f is modeled as
the specular reflection from a vacuum-backed flat elastic plate at normal incidence.
Inspection of Figs. 42 and 9 suggésts that for x < 12, frgy with foc = 0 gives a more
accurate representation of the exact | fpws |. This may be anticipated since the assumptions
used in the modeling of f5p as f + f¢; breakdown for sufficiently low frequencies.

Three improvements to the current ray synthesis which siould extend the range
of applicability ére as follows. First, exiension of the ray synthesis to smaller values of x
requires the inclusion of contributions from the subsonic portion of the ag leaky Lamb
wave and Franz-type waves. These were not included in the present model since for
subsonic waves Eq. (4) predicts sin(6; ) > 1. (During the course of this research, a method
for including such contributions for thin shells has been proposed.2) Presumably, these
types of surface guided elastic waves contribute to the structure in | f1 for x < 7. Second,
improvements in the approximation ror the specular contribution fsp when x is not large
may be needed. Third, a thorough investigation of the sy leaky Lamb wave behavior in the

vicinity of the anomaly discussed in Sec. 4.4 should be conducted. As suggested in Sec.

4.4, a modified ray picture may be needed in this region. The consequence of a
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Fig. 9 The dashed line is | fpws | and the solid line is 1 fray | for the stainless steel shell.
The leaky Lamb waves included in fray are ap and s¢. The present figure differs from Fig.
4a by setting foc = 0 in Eq. (15) so that the curvature correction to the reflected wave

amplitude is neglected. The improved agreement over part of this x region between | fpws |

and | fray | is discussed in Sec. 4.5.
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negative group velocity on the sy contribution needs to be more fully explored as well as
any connection between the first longitudinal resonance and the cutoff of the 51 Lamb wave
for curved fluid loaded shells.

Comments on the significance of the fractional thickness A/a are appropriate. For
the present numerical investigation for the stainless steel shell, we took A/a =0.162 to
correspond to the shell studied in the scattering experiments in Ref, 12 and subsequent
theoretical studies.13:17.23 Some of the changes which raay be anticipated for smaller A/a
will now be noted. For flat plates in a vacuum, the cutoff frequencies increase with
decreasing h. While the dispersion relations near cutoffs may be strongly affected by fluid
loading, as a general rule it may be anticipated that for a given frequency, fewer leaky
Lamb modes will be required as / is decreased. The frequency for which ¢; of the lowest
flexural (or antisymmetric) Lamb mode equals ¢ of the surrounding fluid is commoniy
referred to as the "coincidence frequency.” (See also comments in Appendix A on the
bifurcation of the ag dispersion curve.) While for the shell considered, coincidence occurs
for x ~ 7; smaller values of h/a would raise the coincidence frequency. Even away from
cutoff and coincidence frequencies, as A/a is decreased, the effect of the fluid loading on the
phase velocity curves, Fig.'A2, will be more pronounced. It may be anticipated that cj/c
(as given by the Watson methodology) will be shifted below the plate in-a-vacuum
curvature-corrected values. Finally, the longitudinal resonance condition, Eq. (1a), may be
expressed as x; g = nn(cy/c)[h/a)-l. Consequently, for a given n, x; g increases with
decreasing h/a.

While the emphasis of the present research has been on scattering in the exact
backwards direction, the generalization of leaky Lamb wave contributions to near

backwards (but off-axis) directions follows from the discussions of axial focusing given in

Refs. 1, 12, and 19. Insight into the high-frequency near-backwards scattering patterns for
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shells which are only slightly spheroidal may be obtained by adapting the analyéis given in
Ref. 22.
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Appendix A. Leaky Lamb wave parameters f; and cj/c

A Sommerfeld-Watson transformation has not been directly applied to the exact
partial-wave series for the backscattering from a evacuated elastic spherical shell.
However, some results from a Sommerfeld-Watson transformation of the fortn function for
backscattering from an solid elastic sphere can be extended to the case of a shell. 1tcan be
argued from the geometric similarity of the two scatterers that certain resuits of a
Sommerfels-Watson transformation of f for the shell will produce analogous results. In
Sec. 4.2.A, a geometric interpretation of the backscattering of surface guided elastic waves
from a solid elastic sphere was employed in modeling the backscattering from a shell, In
this Appendix, the methodology for the determination of B;(x)and c;(x)/c is briefly
reviewed.

From Williams and Marston's analysis,’ the radiation damping parameter and

surface guided elastic wave phase velocity are obtained by solving the following equations:

Dy,(x) =0, (A1)

vy =0y +ify, (A2)

(cifc) = x/(0y + 1/2). | (A3)
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Equation (A1) is the determinant of the denominator in Eq. (3) where the integer index n
has been replaced everywhere by a complex index v;. The complex index v, for fixed x is
obtained by numerical techniques described in Ref. 12. These numerical techniques
involve the evaluation of residues of certain integrals. Once v; is determined, then both f3
and (cy/c) via Eq. (A3) are known. The radiation damping parameters 3;(x) for the various
leaky Lamb waves are shown in Fig. Al. An important feature in Fig. A1 is that 3; for the
ap, S0, a1, and s leaky Lamb waves are relatively small throughout the range of x
investigated; while f3; for the s1 leaky Lamb wave appears to diverge. The truncation of the
vertical axis at 0.8 Np/rad resolves the detail of some the Lamb wave damping parameters,
but it obscures the fact that the 51 damping parameter becomes large for x < 72 (B; = 3.5 at
x =70 and By = 7.5 at x = 65). The derivation! leading to Eq. (7) made the assumption
2nf; << 1. It may be argued, however, that Eq. (7) is a good approximation for G; even
when 2nf3; violates this assumption.! Inspection of Figs. 4 - 6 supports the claim that Eq.
(7) with ¢; = 0 is a valid approximation for G; even if 2nf; is not << 1.

The normalized dispersion curves for the leaky Lamb waves are shown in Fig.
A2. Mode identification was confirmed by comparison with curvature corrected results for
a flat piate in vacuum following the method of Ref. 17. Several characteristics should be
noted. First, the ap leaky Lamb wave (solid line) becomes subsonic for x < 7.
Sammelmann et al.30 have reported a bifurcation of the ag leaky Lamb wave dispersion
curve for the fluid-loaded spherical shell near a value of x associated with the transition
from a supersonic to subsonic phase velocity for the dispersion curve of the ag Lamb wave
on a spherical shell in vacuum. Since the relevant contributions to the present ray synthesis
are implicitly supersonic, the subsonic branch was not included in Fig. A2. The dispersion

curves for g (long-dashed line) and 57 (dot-dashed line) are analogous to the flat-plate

Lamb wave dispersion curves. Both the a) and sp modes appear to approach well defined
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Fig. A1 The radiation damping parameters for the various leaky Lamb waves employed
in | fray | for the stainless steel shell considered. Each leaky Lamb wave is associated with
the foilowing line: ap solid; s short-dashed; ay long-dashed; ) short-long-dashed; and s,
dot-dashed.
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Fig. A2 The normalized dispersion curves for the various leaky Lamb waves employed
in | fray 1. Eachi Lamb waves is associated with the following line: ag solid; 50 short-
dashed; a; long-dashed; 51 short-long-dashed; and s7 dot-dashed. The dotted lines are
based on corresponding mode calculations for a flat plate in a vacuum with curvature

corrections as given by Marston (Ref. 17). These are included so as to confirm the

classification of modes given. o
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cutoff frequencies. As in Fig. Al, the vertical axis has been truncated and the asymptotic
behavior of these modes is not adequately represented. For example: for /= ay, ¢j/c =27
atx = 42, and for / = 53, ¢j/c = 32 at x = 85.

The phase velocity ratio for the sg Lamb wave is represented by the short-dashed
line in Fig. A2. Two features are observed from this dispersion curve. First, the sgp Lamb
wave is weakly dispersive in the ranges 10 < x <40 and x > 80, As discussed in
Appendix B, the spacing Ax,.s hetween adjacent resonance peaks in Fig. B2 is
approximately equal to the normalized group velocity cgj/c for weakly dispersive Lamb
waves. Second, the dispersion curve appears to diverge as the frequency approaches the
natural frequency wp of a purely radial oscillation or breathing mode of the shell. Sucha
divergence is plausible since the radial displacement of the shell at all points on the surface
is in phase when @ = wg. In Appendix A of Ref. 15, wg for a thin spherical shell in
vacuum is related to the ring frequency wg of an iwdinite cylindrical shell.3! The estimated
value of x corresponding to wg is xp = 6.3. Furthermore, it is argued in Ref. 15 that the
fluid-loading of the spherical shell will only slightly reduce x.

The normalized phase velocity for the s Lamb wave is the final dispersion curve in
Fig. A2 to be considered (tfxc long-short dashed line). Unlike the @) and s7 leaky Lamb
waves, the dispersion curve for the 51 leaky Lamb wave on the fluid-loaded shell does not
approach a definite cutoff frequency. The cutoff frequency for the equivalent s) Lamb
wave on a flat elastic plate in a vacuum corresponds t02? x ~ 76.8. Near x =71, the 51
leaky Lamb wave attains a maximum value and then decreases with decreasing x. The

group velocity is related to the phase velocity by!2

cgt =ci(1 - [1 - (e (deyfdx) 1], (Ad)
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Numerical differentiation indicates that sy on a fluid-lnaded shell has a negative group
velocity in the region 65 < x <71. The normalized group and phase velocities are
displayed in Fig. A3, The possibility of a wave propagating with a negative group velocity
was first investigated by Lamb.32 - Hackman and Sammelmann33 have reported that an
analysis of the poles of the S-matrix in the complex &-plane produces regions of negative
group velocities for some leaky Lamb waves on thin elastic spherical shells. Finally, the
dispersion curve has been truncated below x = 65 because the numerical algorithm
implemented in the determination of cj/c becomes inaccurate.

Without resorting to the above numerical differentiation, the sign of the group
velocity for a leaky Lamb wave on a fluid-loaded shell can be determined from the slope of
oy(x). If Eq. (A3)is differentiated with respect to x, then the result is

a)(x)%?%{l —,?r’)

I (AS)

Equation (A4) relating ¢,/ and ¢/ can be inverted to obtain an expression for the second term
in Eq. (AS5). Substituting this result intc Eq. (A5) gives the simple result 0tj(x) = ¢/cy.
Although a plot of 0(x) is not presented here, it has been verified that oy(x) has a positive

siope for x > 71, atta’ns a local minitmum near x = 71, and has a negative slope for x < 71.

Appendix B. Fabry-Perot expression for f;

In this appendix, the ag and sg leaky Lamb wave contributions to the
backscattering amplitude are 1solated and examined. By considering an individual
contribution, the resonant nature of Eq. (6) is demonstrated and the similarity between Eq.
(6) and a Fabry-Perot resonator is illustrated. Figure B1 is | f;| where / = ag and Fig. B2
corresponds to | f; | for the sp leaky Lamb wave, The width of any given resonance peak

from the ap Lamb wave contribution in Fig. B1 is representative of relatively low Q
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Fia. A3 The normalized phase (dashed) and group velocity (solid) for the s) leaky Lamb
wave in the vicinity of the anomaly near x = 71 and longitwdinal resonance at xy g = 76.8.
The small oscillations in the group velocity (x > 73) are a result of numerical

differentiation.
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resoniances while Fig. B2 for so coatains both high Q resonances (x < 40) and low Q
resonances (x > 40). Ordinarily, the increment in x for these calculations of | f7 | (I = ag, s0)
is Ax = 0.015875. In Fig. B2, the high Q resonances of the sy Lamb wave at x = 17.6,
21.3,25.0 and 28.6 have beer. enhanced by sufficiently decreasing Ax to resolve the very
narrow linewidths, It may be inferred from Fig. B2 and Eq. (16) that a partial-wave series
calculation will be numerically intensive, since Ax must be chosen small and n,,, exceeds
x.

Consider the form of the denominator in Eq. (6). If a Lamb wave on the shell is
non-dispersive, then the spacing between two adjacent resonances would be Axs = ci/c.
For weakly dispersive Lamb waves, it is weli-known that Ax,s = Cgi/c. The relationship
between Ax,qs and cg can also be obtained from the “orm of the denominator in Eq. (6).34
Figure A2 demonstrates that the ag leaky Lamb wave is weakly dispersive for x > 50 and
cgilc = 2.178 (see Fig. 6 of Ref. 12). Inspection of Fig. B1 indicates that the spacing Axye;
for x > 50 is Axpes = 2.123 (for comparison 1.947 < ¢j/c < 2.037, 50 < x < 100). Again,
the dispersion curve in Fig. A2 indicates the s leaky Lamb wave is weakly dispersive in
the regions 10 <‘x <40 and x > 80. The spacing between adjacent peaks in the region 10 <
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= 3,620 while numerical differentiation
predicts Axpes = cgi/c = 3.616 ( at x = 14, ¢j/c = 3.978). A thorough investigation of the
dependence of Ax,s on ¢j/c and cgy/c for dispersive leaky Lamb waves is beyond the scope
of the present appendix.

Also, contained in Figs. B1 and B2 are envelops of the maximum and minimum
values that | fi | can attain, From Eq. (6), | f] imax and | f Imin occur when exp(i2nxc/cy) =-1
and exp(i2mxc/c)) = 1, respectively. Inspection of Egs. (6) and (7) demonstrates that | /715

(q = min, max) is an implicit function of x through the dependence of 3 and ¢y/c on x. The

importance of the lower envelop is that it describes a smooth background associated
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Fig. Bl  The Fabry-Perot representation of the ag leaky Lamb wave contribution to the
form function for backscattering from an evacuated elastic spherical shell. The long-dashed
line is the maximum vzlue that | f; | can attain and the short-dashed line is a minimum
envelop which can be interpreted as a smooth background associated with off-resonance

contributions from the ap Lamb wave. The widths of the resonances are representative of

relatively low Q leaky Lamb wave resonances.
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Fig. B2 The Fabry-Perot representation of the so Lamb wave contribution to the form
function for backscattering. The long-dashed line is the maximum value that | f; | can attain.
The short-dashed line is a minimum envelop which can be interpreted as a smooth

background associated with off-resonance contributions from sg. The widths of the

resonances for x < 40 are representative of high Q leaky Lamb wave resonances.
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with the Ith leaky LLamb wave. The resonance enhancement rises above the backgrouad.
Unlike resonance scattering theory33-37 where a suitable background contribution must be
chosen to synthesis the backscattering amplitude, the Fabry-Perot form of Eq. (6) correctly
accounts for a background contribution even for off-resonance values of x. That is, the
resonance peaks in | f; | rise relative to i f; Imin Which represents a off-resonance smooth

background.!

Appendix C. Localization principle analysis of partial waves near a
longitudinal resonance

The localization principle states that the nth partial-wave amplitude for scattering
from a sphere may be associated with the contribution to the scattering from a ray having an
impact parameter!4

s=a(n + 1/2)/x. (C1
For s > a, rays miss the sphere, and the partial wave amplitudes typicallv decrease abruptly
in magnitude as n increases above x. Here, we analyze the elastic response of the shell by
considering the contribution of individual partial-wave amplitudes in the form function for
backscattering. The elastic behavior of the shell is isolated by subtracting a rigid

background. The relevant expression in the present analysis is

By(®)  j®

F(x,n) = £,(x) - f1(x) =i£x(-1)“(2n+1) D, " e | (€2)
n

where the prime indicates differentiation with respect to the argument. The second term in
Eq. (C2) represents the subtraction of an acoustically hard or rigid immovable sphere

background.37 In particular, the cause of the anomalous peak in the ray synthesis near x =
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71 and 2 possible relationship between the longitudinal resonance and the .1 leaky Lamb
wave are considered below.

Figure C1 shows | F(x,n) | for x = 71.7 which corresponds to a value of x at the
center of the peak in E2 of Fig. 7. Figure Cl illustrates the localization principle since the
important contributions are the partial-wave amplitudes at n = 8 - 11, 15, 27, and 35. These
correspond to various leaky Lamb wave contributions as well now be shown. Inspection
of Fig. 1 and Eq. (4) dcmonstrates‘ that the impact parameter is related to the outer radius of
the shell by
s = a sin(8)) = ac/c;. Tt follows that a partial wave amplitude can be associated with a leaky

wave contribution by

n= x(c/cl) - (1/2). (C3)
Table CI gives the result of applying Eq. (C3). Inspection of Fig. C1 and Table CI indicate
that the ag, 5¢, and a; leaky Lamb wave contributions are isolated and associated with a
single partial wave amplitude. An interpretation of the n = 8 - 11 partial-wave amplitudes is
that a broad bundle of rays couples to the 51 leaky Lamb wave on the shell and and that
wave contributes to backscattering. This may be consistent with the direct backscattering
mechanism proposed in Sec, 4.4,

One may anticipate some relationship between the longitudinal resonance and
the s1 Lamb wavs, since the resonance condition in Eq. (1a) gives x g ~ 76.8 which is
equivalent to the cutoff frequency cf 51 on a vacuum-backed flat elastic plate. Information
concerning the longitudinal resonance and the s leaky Lamb wave can be obtained by
studying the contributions to the form function due to individual partial waves. Figure C2
displays a sequence of partial-wave amplitudes as a function of x in the vicinity of x.g.

The series of large peaks starting near x = 55 and n = 16 corresponds to the sg mode and

the set of narrow peaks is due to the aj leaky Lamb wave. Since an estimate of the
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Each peak is associated with a particular leaky Lamb wave contribution. A particular leaky

0 alp—— ao
So
. s,
. a 1 ‘ - .o'a
hd o. L .'..""nonm’o ot -
0 20 40 60 80 100
n
Localization principle analysis of the elastic response of the shell atx =7,.7.

Lanib wave can be associated with a given peak by applying Eq. (C3). (See Table CI).
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TABLE CI. Localization priiciple identification of the partial wave amplitudes at x =71.7
plotted in Fig. C1. The normalized phase velocity is given by Eq. (A3) for the stainless
steel shell and n is given by Eq. (C3).

i clfc n

a 2.023 34.9
50 2.620 26.9
Q) ‘ 4.678 14.8

51 6.484 10.5
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normalized group velocity is given by cgi/c =~ Axyes/An, then the sg and a; peaks ‘
demonstrate the usual behavior of positive cgy/c for a surface guided elastic wave. The
remaining set of peaks is pritnarily associated with the s1 leaky Lamb wave. Two
important feature are immediately evident. First, the group velocity of the 57 Lamb wave
can have either positive or negative values as demonstrated above in Appendix A. This can
be seen by considering the slope, Ax,.s/An, of a smooth curve through the peaks.
However, a discrepancy between the dispersion curves from the analysis in Appendix A
and the present method for estimating cgy/c is also evident. The result of Egs. (A1) - (A3)
in Fig. A2 produces a single-valued function of cj(x)/c. Equation (C3) and the partial-wave
amplitudes in Fig. C2 would suggest, however, that c/(x)/c is a multi-valued function of x
for / = 51. Furthermore, the dispersion curve for s; in Fig. A2 is defined for x < 71, but
Fig. C2 displays that no corresponding peaks in the partial wave amplitudes to account for
this region. A second observation concerning these peaks is that as » tends to zero, the
locus of x corresponding to these peaks appears to approach x;g. The weak peak in |
F(x,0) | near x = x; g appears to be a consequence of the use of a rigid background in Eq.
(C2) which does not display a longitudinal resonance. A calculation of | F(x,n) | (not
shown) where the rigid baci(ground has been replaced by an evacuated fluid shell
background demonstrates that the peak in | F(x,0) | near x = xR is suppressed. This

suggests that the peak in | F(x,0) | displayed in Fig. C2 is associated with the longitudinal

reésonance.
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d50

F{x,n)|

Fig. C2 A sequence of individual partial-wave amplitudes demonstrating the elastic
response of the shell in the vicinity of the longitudinal resonance. The sharp peaks are due
to the a) leaky Lamb wave and the large peaks (n > 15) are associated with sg. The 5]

leaky Lamb wave peaks form the crescent shaped set.
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Appendix I
A. Complex ccupling coefficient: Approximation and an apparent exact
expression
In the development of the ray methods presented in the preceding chapters, a

complex coupling coefficient is defined and denoted as G;. This coefficient describes the
efficiency of the coupling of the incident acoustic wavefield in water with a surface guided
elastic wave excited on the elastic spherical object during the scattering process. For the
case of backscattering from a solid elastic sphere, a Sommerfeld-Watson transformation of
the exact partial wave series representation of the form function f gives a virtually exact
expressionl,2

iclBI 1£Dvl (x)

(1)

The radiation damping of the surface guided elastic wave is [3; (in Np/rad) and x =ka is a
dimensionless size parameter where & is the wavenumber in the surrounding water and a is
the radius of the sphere. The normalized phase velocity of the surface guided elastic wave
is c/c. The functions D+ and D~ are extremely complicated expressions involving
comiplex oraer vj and real
argument. The functions D* and D for a solid elastic sphere are given in Refs. 1 and 2.
The dot above D+ indicates differentiation with respect to v and this derivative is to be

evaluated at v; where vy satisfies the relationships
+ .
@VI(X) =0, V=0, +iB, ¢, (x)fc =x/[oy +1/2]. (2a,b,¢)

Equation (2) is a result of the above mentioned Sommerfeld-Watson transformation. [The

vi that satisfy Eq. (2) also satisfy Dy(x) =0 where Dy is the denominator of the nth partial-

wave amplitude,14 fu(x) = (-1)"2n+1)2/ix)[B(x)/Dp(x)], with the integer index n
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replaced by v.] The complicated form of G in Eq. (1) obfuscates the dependence of G;on
the relevant surface guided elastic wave parameters [J; and cj/c. A simple approximation for
Eq. (1) would facilitate computations of forward or backwards scattering by the
quantitative ray methods previously developed.

Marston developed a simple approximation for | G; | by comparing the results of
resonance scattering theory3.6 and a generalization (based on Watson transform methods)
of the geometrical theory of diffraction.2 A short summary of this analysis follows and it is
restricted to the backscattering direction. In resonance scattering theory at the location of an
isolated resonance, fy, is split into an appropriate background term and a surface elastic

wave contribution f,;. The contribution f, is usually expressed in a Breit-Wigner form

T
£oN (2n+]) P I'l_izg ‘ nl
£ ~"—F—De annl_ X (2T, ) (3)

where xp; is the location of an isolated resonance and the width of the resonance can be
related to I'y;. Define the scattering function Sp(x) = {[2Bp(x)/Dp(x)] - 1}. The
denominator of S,(x) can be writien so as to contain the information about the resonance
location and damping; xp/ is the real root of the real part of that denominator. Equation (3)

~ sl An
u

n A
uic ni

is a resuli of : nominator of S$,{x) about x = X
and separating f, from a background contribution. For high-frequency backscattering
from a solid elastic sphere, f;, for a rigid or immovable sphere is a suitable choice of
background. It can be shown that Re{D,(x = x»))} = 0 where D, is the denominator of fj,.
The subscripts n and / imply that the isolated resonance occurs in f, and it is classified as
the /th type of surface elastic wave resonance (Rayleigh, Lamb, Franz, etc.). From the ray

synthesis, a surface elastic wave contribution to backscattering has the following Fabry-

Perot form?
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in, e-z(n ~8,)B, ~2np, ei2m,

£x)=[-G,e WI1-e L @

where 7 is a propagation phase delay. The basic premise? leading to an approximation for

G is that if both Eq. (3) and Eq. (4) describe the resonance contribution of a surface elastic
wave, then locally near the isolated resonance fi(x) = fy/(x). The remainder of the analysis
involves applying Taylor series expansions to B;(x) and o(x) about x = Xp;. Here, X,y is
a real value of x such that a)(X,,;) = n and the denominator in Eq. (4) attains a local

minimum. With these expansions, Eq. (4) can be cast into a form similar to Eq. (3)

in .
£,(x) = ~ Gl ¢ : Ynl + 128nl )
f i47tBnI Xy * 8nl) —x-(2),,
where
5 =~PB B o 2+p> =28 o o 2+p.> 6a,b
nt =~ BBy L0 + By 1. Yot = 2By 0 Loy + By 1 (6a,b)
The prime in Eq. (6) indicates differentiation of «y(x) and Py(x) with respect to x evaluated
atx =Xy and Bt = Bi(Xnp).

Inspection of Egs. (3) and (5) demonstrates that the location of poles in the complex
x-plane for fy and fj coincide if x,; = X,y + 8, and ['yy = Y51 Numerical computations for
tungsten carbide and aluminum spheres indicate | §,;7 | << 1, which suggests the following
conditions | Oy | << ypy and (dPy/dx) << (doy/dx). With these conditions and pole
locations, comparison of Eqs. (3) and (5) reduces | G| at «u isolated resonance to the
appro-imate form

_ (n+1/2)81t[3n1

1G® =X, | = ———1L, )
nl

The form of Eq. (2¢) and the identification of [(n + 1/2)/X ] = [(ouXn) + 1/2)/X,1

suggests the following smooth continuation of Eq. (7)

I Gl(x) | = 8n[31(x)c/cl(x). ®
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Equation (8) is a simple approximation for | G; | which explicitly exhibits the dependence of
| G | on the relevant surface guided elastic wave parameters.

While this analysis gives a simple approximation for | Gy |, it was initially deemed
too complicatad to construct an approximation for the phase of G; from the above analysis.
However, Williams and Marston have subsequently demonstrated that arg(Gy) = 0 for
surface guided elastic wave contributions to backscattering from solid or hollow elastic
spheres.89 Recently, Ho and Felsen have confirmed Eq. (8) with arg(G)) = 0 for
backscattering from thin elastic spherical shells.10.11 It is noteworthy that their analysis is
based on thin shell equations while the above results are from an analysis starting from the
exact partial wave series for backscattering from elastic spheres.

A Watson transformation of the exact partial wave series representation of the form
function for backscattering from an elastic spherical shell has not been performed. From
the geometric similarity of the sphere and shell, it can be argued that the complex coupling
coefficient for the shell will have the same form as Eq. (1). The shell and sphere coupling
coefticients should only differ in the definitions of D+ and D~ in Eq. (1). The appropriate

expressions are

) =200 -Fy(0), T =200~ Fy (x), %)
D' 1 2) 2
Dy =xhy S 00, 22 =xhe (s (x), ©9b)
(1 2
Fy() == x2pDy (x)/pDy (). 90)

In Eq. (9b), the hy are spherical Hankel functions of the first and second kind of complex
order and real argument and the prime denotes differentiation with respect to the argument.

In Eq. (9¢), x; = xc/c; wheie ¢; is the tronsverse velocity of the shell's material and D(1)

and D@ are the cofactor expansions with icspest to the elements dq) and dpy of D, from f,,
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with n replaced by v. For solid spheres, DM and D@ are 2 x 2 determinants while for
evacuated shells D(1) and D® would be 4 x 4 determinants (see Refs.1 and 3 for the
elements of the determinants). This suggests that the approximatior in Eq. (8) can be
applied to shells for certain classes of surface guided elastic waves.

The remainder of this section compares the consequences of using Eq. (8) with
arg(G)) =0 instead of Eq. (1) for an elastic spherical shell. The material of the shell is
440c stainless steel with the following parameters: longitudinal sound speed ¢j, =
5.854km/s, transverse sound speed c; = 3.150km/s, density p, = 7.84g/cm> and inner-to-
outer radii ratio b/a = 0.838. The parameters for water are ¢ = 1.47%m/s and p =
1.00g/cm3. For these parameters and the frequency range 0 < x < 100, the relevant surface
guided elastic wave contributions are the ap and a; antisymmetric (or flexural) leaky Lamb
waves and the sg, 51, and 57 symmetric (or dilatational) leaky Lamb waves. [The present
ray synthesis is implicitly supersonic through the use of the phase velocity trace-matching
condition sin(6;) = c/c;. Since the ag leaky Lamb wave becomes subsonic for x <7, the
actual range investigated is 7 <x < 100. Also, for x < 10 contributions from Franz-type
creeping waves 1r contribute significantly to backscattering.] Finally, partial lists of the

< Za A _..._...d:-- 13 4 \‘;_...,. Anenilad
S M APPCUHUIA 1. 1V1UIC Ucildlicu

relevant leaKy Laimb wave parameters are contained ifi iabie
discussions of these leaky Lamb wave parameters are contained in Appendix A of chapters
2 and 4.

Comparisons of | Gy | as computed from Egs. (1) and (8) are displayed in Figs. 1a -
4a. These figures correspond to the ag, 50, @1, and s, leaky Lamb waves, respectively.
The solid line represents the exact | Gy | while the dasked line corresponds to the

approximation, It is immediately evident that the two curves for | Gy | are barely

distinguishable for these leaky Lamb waves. Hence, Eq. (8) anpears to be an excellent

approximation of | G | for these leaky Lamb waves. The phases of the exact coupling
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Fig. 1 In (a) the exact| G;! from Eq. (1) for I = ag is the solid line and the approximation

from Eq. (8) is the dashed line. The agreement between Egs. (1) and (8) is excellent. The

phase of the exact G; is shown in (b) and verifies the assumption arg(Gp) = 0. The material

of the shell is 440c stainless steel with radii ratio b/a = 0.838.
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Fig. 2 In (a) the exact | G/ from Eq. {i) for | = 5y is the solid line ard the avproxi.aation
from Eq. (8) is the dashed line. The agreement between Eqs. (1) and (8) is exccllent. The
phase of the exact G is shown in (b) and verifies the assumption arg(Gy) = 0. Tae material _
of the: shell is 440c stainless steel with radii ratio bf/a = 0.838. B
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Fig. 3 In (a) the exact! G; | from Eq. (1) for { = a7 is the solid Line and the approximation
from Eq. (8) is the dashed line. The agreement between Egs. (1) and (8) is excellent. The
phase of the exact Gy is shown in (b). The fine structure evident in arg(G) is attributed to

the method of calculation of the derivative in Eq.(1). The material of the shell is 440c

stainless steel with radii ratio b/a = 0.838.
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Fig. 4 In (a) the exact | G; | from Eq. (1) for [ = 57 is the solid line and the approximation

from Eq. (8) is the dashed line. The agreement between Egs. (1) and (8) is excellent. The

phase of the exact Gy is shown in (b). The structure in arg(G;) may be associated with the

fluid-loading of the shell. The material of the shell is 440c stainless steel with radii ratio b/a

= 0.83¢.
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coefficients, arg(G)) = tan-1[Im{G;}/Re{G}}], for these Lamb waves are presented in
Figs. 1b - 4b. These figures indicate that the assumption arg(G;) = 0 (I = ag, s, a1, and §2)
is acceptable for the ray synthesis calculations. The apparent deviation in Figs. 1b and 2b
from arg(Gy) = 0 (I = ap, sp) for x < 20 might be anticipated since the Watson
transformation is an asymptotic analysis. The effects of the fluid loading of the shell are a
plausible cause for the structure evident in arg(Gy), [ = s2, since near a cutoff frequency the
fluid loading may significantly affect the behavior of the leaky Lamb wave.12 The rapid
variation in arg(G)), I = a1, is attributed to the method used in computing the derivative of
D+ with respect to v. However, inspection of the ray synthesis of the form function for
backscattering in chapter 4 and the total scattering cross section in chapter 2 demonstrates
the uscfulness of Eq. (8) with arg(Gy) =0.

The 51 leaky Lamb wave contribution to backscattering demonstrates behavior that
merits a more detailed discussion. Figure § displays | G; | calculated usirg Egs. (i) and
" (8). InFig. 5, the dashed line is the approximation and the se'4 curve is the exact | Gy 1.
Inspection of Fig. 5 indicates that Eq. (8) is an excellent approximatior: for | ;| when x >
72, but it appeafs to diverge from the exact coupling coefficient for x <72. The resolution
in the region of the divergence is enhanced in Fig. 5b to give greater detail of the maximum
in the exact | Gy |. Furthermore, the phase of the exact 7; in Fig. 6 supports the assumpticn
arg(Gy) = 0 for x > 72, but arg(G)) appears to have a —n/2 phase shift in the vicinity of x =
72. The apparent divergence of Eq. (8) from the exact | Gy | and the —n/2 phase shift are
related to the negative group velocity of the 57 leaky Lamb wave. In Appendices A and C
of chapter 4, this leaky Lamb wave is shown to have a negative group velocity for x <72.
Hence, the approximation in Eq. (8) for | G;1 with arg(G)) = 0 appears to be applicable for

those surface guided elastic wave that have positive group velocity and seems to

breakdown whern the group velocity becornes negative.
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Fig. 5 A comparison of the exact | G;1, ! = s1, from Eq. (1) (solid line) and the
approximation from Eq. (8) (dashed line). Figure 5a demonstrates the apparent divergence "

of the approximation from the exact | G; | while Fig. 5b enhances the resolution near the

maximum in | Gyl atx = 72.
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Fig. 6 The phase of the exact Gy, arg(G)) = tan-{Im(G)/Re(G))). When x > 72, the

assumption arg(Gy) = 0 is applicable. But, near x = 72 arg(G)) has a ~%/2 phase shift,

This shift is attribnted to the negative group velocity of the I = sy leaky Lamb wave for x <
72.
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Two important numerical techniques used in the determination of the exact Gy are

noted. First, the derivative, dD+/dv, evaluated at the Ith leaky Lamb wave pole v = v; is

performed by a contour integration. The theory of residues from complex analysis gives

{d@&x)) 1 g B
T 2m

277 (10)

where D* is assumed analytic everywhere within and on the contour C and v; is contained
within C. For the numerical algorithm implemented, C is-chosen so as to isolate the
residue of the pole at v = v; from any other possible residue contribution. While Eq. (10)
appears to be a good method for the evaluation of dZ/dv at v = vy, there seems to be
regions where numerical round-off may corrupt the result from Eq. (10). To minimize this
type of possible numcrical crror, a three-point sliding average was implemented on | G; !
and arg(Gy). This sliding average tends to smooth any fluctuations in | G; | or arg(Gy)
introduced from implementation of Eq. (10).
B. Significance of the group velocity and its sign

To better understand the breakdown of Eq. (8), it is first necessary to review the
relationship between the group and phase velocities and the spacing between adjacent
resonances. The group velocity for the [th leaky Lamb wave cgy is defined by ¢y = dw/dk;
where  is the angular frequency and k; is the wavenumber of the Lamb wave propagating
on the shell. The phase velocity of the lth leaky Lamb wave is ¢; = w/k; and the phase
velocity of the incident wave is ¢ = w/k. The group and phase velocities for the lth leaky

Lamb wave are related by

¢y =11 = 1= (e, an ™17, (n
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It is generally accepted that for a weakly dispersive surface guided elastic wave the spacing
between adjacent resonance peaks is Axpes = Cgy/c. If the leaky Lamb wave propagates
without dispersion, then Eq. (11) reduces to the expected result ¢y = .

The simple relationship Axyes = cgi/c can be established from the Fabry-Perot form
of a leaky Lamb wave contribution to backscatiering. If x = x,,, (m = 1,2), correspond to
different resonances in fj, then x) and x; are adjacent resonance if the phase ®(x) =
2noy(x) in the denominator of Eq. (4) changes by 27 as x = x is increased to xp. The
condition for adjacent rcsonanccs.becomes [o(x2) — oy(x1)] = 1 where Axpes = X2 —x1. A
two term Taylor series expansion of oy(x2) about x = x} gives the expression
Axres=~[o)(x = Jcl)]'1 where terms of order (Axyes)? and higher can be neglected for
weakly dispersive leaky Lamb waves. The function a'l (x) can be evaluated from Eqgs. (2c)
and (11). Differentiation of Eq. (2¢) gives aj(x) = (c/¢))I - {x/c;)}{d¢,/dx)]). From Eq.
(11), the second term in a'l(x) becomes (x/c;)(dcy/dx) = (cgi - cp)/ci. Combining these

results gives the simple expressions
a',(x) = c/cgl , Ak = Cg[/C- (12a,b)

Equation (12b) has been verified in Appe adix A of chapter 4 for regions of x where the ag
and sq leaky Lamb waves demonstrate weak dispersion.

The relevance of Eq. (12a) to the 51 leaky Lamb wave contribution to backscattering
and the breakdown of Eq. (8) for the coupling cocfficient may be found by examining
oy(x). The instantaneous slope of oy(x) is (x'l(x) which implies that the group velocity of a
leaky Larnb wave can be directly obtained froin the Watson transformation without the use
of Eg. (11). Figures 7a and 7b are oy(x) and $3,(x) detcrmined by 2 Watson mcthodology.

Figure 7a shows that a’l(x) is positive for x > 72, goes through zero near x = 72, and is

negative for x < 72. Asx approaches x = 72 from above cgj/c divergences to 4 o0 and
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divergences to — oo as x approaches 72 from below. Hence, Fig. 7a confirms the group
velocity calculation displayed in Fig. A.3 of chapter 4 for the 51 leaky Lamb wave. The
radiation damping parameter 3;, / = s, is shown in Fig. 7b for completeness. Inspection
of Fig. 7b and Eq. (4) demonstrates that for x < 72 contribution from circumnavigation of
the 57 Lamb wave about shell is negligible. The locus of 53 leaky Lamb wave roots v;(x),
I =5 is displayed in Fig. 8.

Finally, the width of an isolated resonances is related to I'y; in Eq. (3). With the
assumed coincidence of the poles of f,,;(x) and fy(x) in the complex x-plane I'y; becomes ¥y
as noted below Eq. (6). Inspection of Eq. (6b) suggests, however, that ¥, would go to
zero near x =72 as oc', {(x) vanishes. Furchermore, since on',(x) becomes negative for x <
72, then 7y, would be negative for any resonances in this region. That is, the width of
leaky Lamb wave resonances would appear to be negative for a leaky Lamb wave with
negative group velocity if the resonance is assumed isolated having the form of Eq. (3).
When cgi/c is negative, however, the argument breaks down since the resonance spacing
from Eq. (12b) is predicted to be negative. It would appear that the derivation that 7y, < 0
also breaks dov?n. Finally, when cgjfc <0, it may also be argued that the combined result
of I’gs. (4) and (8) with arg(G)) = Q is incomplete,

One caveat is noted. From Fig. (7b), it is observed that the 53 leaky Lamb wave
has a rather large radiation dampiﬁ ¢ parameter. In Ref. 2, the assumption 2ntfl; << 1 was
used in deriving Eq. (8). Subsequently, this condition was determined to be too restrictive
and Eq. (8) has been shown to give fairly good agreement with the exaci | Gy | even when
2nf; << 1is not satisfied.2 [Whether the group velocity is positive or negative for the

relevant surface clastic waves in those comparison was not pursued.] Furthermore, the

expl-2(m - 8pfy] factor in Eg. (4) indicates that the 51 leaky Lamb wave contribution in
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Fig. 7 The [ = 5] leaky Lamb wave parameters: (a) oy(x) and (b) Bj(x). The instantaneous
slope of oy(x) is related to the normalized group velocity through Eq.(11). When the group

velocity becomes negative, the derivation leading to Eq. (8) may breakdown. From (b),

the radiation damping of the 51 leaky Lamb wave is observed to be extremely large.
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Fig. 8 The locus of the 51 leaky Lamb wave roots from the Watson methodology. The ka
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in vi(x) is also indicated.
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the ray synthesis for the ray path assumed in Eq. (4) is negligible for x <72 since f3; is
large.

Finally, the present level of ray synthesis appears to be incomplete. The current ray
model includes contributions from a specular reflection and leaky L.amb waves which
circumnavigate the elastic spherical shell. The generalized specular reflection contains the
ordinary specular ray and rays associated with repeated internal reflections from the inner
surface of the shell at r = b (see Sec. 2 of Chapter 4). The inclusion of these internal rays
seems to corr¢ ctly describe the manifestation of longitudinal resonances in the form
function for backscattering. The ray synthesis of the Ith leaky Lambt wave contribution
giving a Fabry-Perot form accounts ior the propagation of the leaky Lamb wave around the
shell, but negiects the possibility of a direct ray contribution. A direct contribution from a
leaky Lamb wave is briefly discussed in Sec. 4 of Chapter 4 and is illustrated by ray B"A”
in Fig. 1 of Chapter 4 (where 6; — 0). The results of a Sornmerfeld-Watscen
transformation of the form function for backscatcering from an elastic sphere,! which are
extended to the shell, are based on the assumption oy >>> B;. This assumption may omit
direct ray contributions associated with a leaky Lamb wave when ; ~ oy Furthermore,
the

nanatiya arnn At M nocrnintad wtith of lnraa rn
~ 'y Fys gy i

™ oua y nvr ha in cnama wavw 7= Arntin
2d
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*u
“uLivil

damping.8 It is noteworthy that the use of the revised coupling coefficient shown in Figs.

5 and 6 does not remove the anomaly near x == 71 in Fig. 7 of Chapter 4, That is because

| f11is small since B; is large (B; = 2) near this anomaly.
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Appendix IT

Leaky Lamb wave parameters

The contents of this appendix are five tables containing the parameters used in the
ray synthesis calculations presented in Chapters 2 and 4 and Appendix I. The method
employed in determining these parameters ©  *line in Appendix A of Chapter 2 or 4. The
format of each table is four columns of numbers for the dimensionless size parameter ka,
normalized phase velocity of the leaky Lamb wave cj/c, the radiation damping parameter 3,
and oy = Re(v)) from the Watson transform methodology. These tables are for a 440c
stainless steel shell with inner-to-outer radii rado b/a = 0.838. The material parameters for
440c stainless steel are given in Sec. 5 of chapter 2.

The computer code used in determining v; for the Ith leaky Lamb wave at a fixed x
is essentially the same as the FORTRAN program ZNU implemented by Williams! for
solid elastic spheres. This program is based on the winding number theory from complex
analysis which is discussed by Williams. Two modifications were made to ZNU for the
computation of v; for the evacuated spherical shell. First, the external function F(v) is the

determinant Dj(x) in the denominator of the partial-wave coefficient where the integer index

evacuated shelis Dy(x) becomes a 5 x 5 determinant, The elements of D,(x) for a shell are

\
|
n is repiaced everywhere by compiex v. For spheres, Dyfx) is a 3 X 3 determinant and for
listed in Appendix A of Ref. 2. Second, the routine OLVER that is employed for the

computation of Bessel and N »urrann functions of real argument and com"iex order has

been slightly rewritten. Previously, this routine returnied single precision values, but since

all other computations in ZNU (an in OLVER) are double precision OLVER was modified

to return double precision values. Ore other modification 1o OLVER consisted of the

rewriting of portions of the code that are in FORTRAN 1V in standard FORTRAN 77.
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Once a root vy at a fixed x for the lth leaky Lamb wave was determizned, it was
inserted into a secor: 2 computer code that tracked the locus vy(x). A discussion of the
necessary mathematical theory is given in Appendix B of Ref, 2. The algorithm assumed
that vy(x}is a well-behaved function of x (see Fig. Al of Chapter 2) and that v;(x) was
approximately the value of v; at x+/4Ax where Ax << 1. A square contour wis centered
+ about vj(x), x was increased (or decreased) by Ax and then the windiag nutaher was
determined from numerical integration of Eq. (B1) in Ref. 2. If the winding number is
equal to one (an isolated zero, v = vy, of Dy (x) is enclosed within the contour), then Eg.
(B2) from Ref. 2 was integrated about the same contour. This recursive procedure was

implemented for the determination of the parameters given in Tables I1.1 - IL5.
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Table II.1 The ag leaky Lamb wave parameters

ka cc oy 8y ka cijc oy VBI

7.00 1,084072 5957154 0.383446 8.00 1.145666 6.482839 (.349988
9.00 1.19973G 7.001686 0.319891 10.0 1.248506 7 509575 0.295577
11.0 1.295156 8.006322 0.275207 12.0 1.334342 8.493196 0.260708
13.0 1,372558 8971365 0.2481%1 14.0 1408150 9.442120 0.237946
15.0 1.441409 9.906483 0.229505 16.0 1.472554 10.365476 0.222493
17.0 1,501791 10.81982 0.216644 18.0 1.529260 11.27017 0.211732
19.6 1.555182 11.71722 G.207613 20.0 1.579610 12.16135 0.204157
21.0 1.602686 12.60301 0.201267 22.0 1.624505 13.04259 0.198866
23.0 1.645162 13.48039 0.196897 24,0 1.664737 1391669 0.195304
25.0 1.683309 14.35170 0.194052 26.0 1.700941 14.78566 0.193103
27.0 1.717691 15.21878 0.192434 28.0 1.733624 15.65114 0.192022
29.0 1.74878C 16.08299 ().191845 30.0 1.763213 16.5143% 0.191896
31.0 1.776967 16.94545 0.192153 32,0 1.790076 17.37634 ().192609
33.0 1.802577 17.80712 0.193257 34.0 1.814507 18.23787 0.194087
35.0 1.825891 18.66873 0.195096 36.0 1.836764 19.09969 0.196279
37.0 1.847151 19.53084 0.197632 38.0 1.857077 19.96226 0.199153

39.0 1.866561 20.39404 0.200840 40.0 1.875630 20.82616 0.202694
41.0 1.884300 21.25874 0.204714 42.0 1.892595 21.69176 0.206898
43.0 1.900525 22.12533 0.209249 44,0 1.908108 22.55949 0.211769
45.0 1915362 22.99425 (.214458 46.0 1.922300 23.42967 0.217318
47.0 1928935 23.86577 0.220342 48.0 1.935281 24.30260 0.223548
49.0 1941352 24.74014 0.226932 50.0 1947150 25.17855 0.230503
51.0 1952696 25.61774 0.234247 52,0 1.957989 26.05786 0.2381Y7




167

53.0 1963046 26.49886 0.242336 54.0 1967873 26.94079 0.246672

55.0 1972478 27.38371 0.251207 56.0 1976872 27.82759 0.255943

57.0 1981057 28.27252 0.260883 58.0 1.985041 28.71854 0.266031

59.0 1988834 29.16563 0.271386 60.0 1.992438 29.61386 0.276951

61.0 1.995861 30.06326 0.282730 62.0 1999109 30.51382 0.288721

63.0 2.002189 30.96557 0.294924 64.0 2.005101 31.41859 0.301338

65.0 2.007853 31.87290 0.307964 66.0 2.010449 32.32848 0.314796

67.0 2.012896 32.78538 0.321832 68.0 2.015195 33.24363 0.329068

63.0 2.017353 33.70323 0.336501 70.0 2.019376 34.16418 0.344117 o
71.0 2.021263 34.62655 0.351917 72.0 2.023021 35.09033 0.359887
73.0 2.024654 35.55553 0.368019 74.0 2.026168 36.02214 0.376265 |
750 2.027564 36.49020 0.384720 76.0 2.028849 36.95966 0.393266

77.0 2.030626 37.43055 0.401925 78.0 2.031099 37.90285 0.410681

79.0 2.032071 38.37660 0.419523 80.0 2.032949 38.85170 0.428427

81.0 2.033733 39.32823 0.437391 82.0 2.034432 39.80610 0.446391

83.0 2.035046 40.28531 0.455415 84.0 2.035585 40.76577 0.464444

85.0 2.056046 41.24758 0.473471 80.0 2.0306430 41.730064 0.482477

87.0 2.036762 42.21485 0.491445 88.0 2.037024 42.70028 0.500374

89.0 2.037226 43.18685 0.509245 90.0 2.057274 43.67450 0.518053

91.0 2.037473 44.16318 0.526782 92.0 2.037521 44.65290 0.535432

93.0 2.037526 45.14359 0.543993 94.0 2.037491 45.63517 0.552456

95.0 2.037417 46.12766 0.560822 96.0 2.037309 46.62099 0.569089

97.0 2.0371689 47.11510 0.577247 98.0 2.037001 47.60994 (.585298

99.0 2.036806 48.10551 0.593243 100.0 2.036586 48.60179 0.601084
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Table II.2 The sg leaky Lamb wave parameters

ka cifc oy B ka cyc oy By -

7.0 5.672502 0.734023 0.257460 8.0 4.768751 1.177588 9.36004c-0%
9.0 4.411582 1.540085 5.16725¢-02 10.0 4.235214 1.861156 3.24039%¢-02 :
11.0 4.131961 2.162174 2.14516¢-02 12.0 4.065046 2.451996 1.45435e-02
13.0 4.018514 2.735027 9.91413e-03 14.0 3.984383 3.013719 6.69481¢-03
15.0 3.958239 3.289564 4.40952¢-03 16.0 3.937482 3.563510 2.77951e-03
17.0 3.920461 23.836225 1.62705¢-03 18.0 3.006104 4.108173 8.402z0c-04
19.0 3.893684 4.379697 3.42250e-34 20.0 3.882687 4.651071 7.97300e-05
21.0 3.872742 4922514 1.59100e-05 22.0 3.863574 5.194210 1.24970e-04
23.0 3.854973 5466319 3.89240e-04 24.0 3.846779 5.738986 7.96640c-04
25.0 3.838863 6.012345 1.33805e-03 26.0 3.831120 6.286527 2.01034e-73
27.0 3.823465 6.561658 2.81140e-03 28.0 3.815824 6.837864 3.74218e-03
29.0 3.808135 7.115277 4.80525e-03 30.0 3.800339 7.394032 6.00586€-03
31.0 3.792385 7.674275 7.35021e-03 32.0 3.784225 7956158 8.8472%¢-03
33.0 3775811 8.239845 1.05080e-02 34.0 3767098 8.525516 1.23452¢-02
0 3758041 8.813362 1.43745¢-02 36.0 3.748588 9.103615 1.66137¢-02
37.0 3738693 9.396507 1.90824e-02 38.0 3.728302 9.692308 2.18088¢-02
39.0 3.717362 9.991310 2.48179¢-02 40.0 3.705806 10.293874 2.81443¢-02
41.0 3.693569 10.60038 3.18271¢-02 42.0 3.680577 1091125 3.59108¢-0z
43.0 3.665747 1:1.22702 4.04499¢-02 44.0 3.651934 11.54825 4.550G70¢-02

450 3.636183 11.87561 5.11561e-02 46.0 3.619230 1220989 5.74824e-(2
47.0 3.600981 12.55200 6.45916e-02 48.0 3.581286 12.90301 7.26029<-02
49.0 3.559972 13.26416 8.16586e-02 50.0 3.536840 13.63691 9.19230e-02
51.0 3.511670 1402301 0.103584 52,0 3.484216 14.42445 0.116846
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53.0 3.454221 14.84355 0.171937 54.0 3.421362 15.28305 0.149076
55.0 3.385458 15.74595 0.168431 56.0 3.346179 16.23551 0.190073
57.0 3.303382 1675504 0.213381 58.0 3.257042 17.30757 0.239423
59.0 3.207244 17.89528 0.265850 60.0 3.154775 18.51879 0.291861
61.0 3.190104 19.17676 0.315840 62.0 3.044410 19.86520 0.336147
63.0 2988409 20.57793 0.351540 64.0 2934767 21.30753 0.361481
65.0 2.882950 22.04630 0.366147 66.0 2.834155 22.78737 0.366245
67.0 2.788730 23.52510 0.362730 68.0 2.746857 24.25557 0.356537
65.0 2708440 24.97592 (.348488 70.0 2.673345 25.68442 (.339227
71.0 2.641345 26.38025 0.329233 72.0 2.612192 27.0€305 0.318843
73.0 2.585635 27.73292 0.308290 74.0 2.561434 28.39007 0.297732
75.0 2.539353 29.03508 0.287265 76.0 ,2.519193 29.66839 0.276955
77.0 2.500764 30.29058 0.26€844 78.0 2.483897 30.90227 0.256955
79.0 2.468440 31.50402 0.247305 80.0 2.454265 32.09632 0.237902
81.0 2.441245 32.6798G 0.228745 820 2.429277 33.25490 0.219838
83.0 2418263 33.8221€¢ 0.211141 84

o

2.408122 34.38195 0.202775

6.0 2390154 3548094 0.186707

AV

85.0 2398775 3493475 0.194416

0

87.0 2.382201 36.02085 0.179049

o]
<o

8.0 2.374851 36.55495 0.171636
89.0 2.368062 37.08347 0.164468 90.0 2.361786 37.60675 0.157544

91.0 2.355984 38.12505 0.150864 92.0 2.350614 38.63871 0.144424
93.0 2.345643 139.14797 0.138224 94.0 2.341044 39.65202 0.132259
95.0 2336785 40.15415 0.126526 96.0 2.332840 40.65155 0.121020
97.0 2329188 41.14542 0.115739 98.0 2.325805 41.63594 0.110679
99.0 2322670 42.12336 0.105831 100.0 2.319769 42.60775 0.101101
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Table I1.3 The a) leaky Larmb wave paramcters

ka

cifc

oy

B

ka cifc

]

By

46.0
48.0
50.0
52.0
54.0
56.0
58.0
60.0
62.0
64.0
66.0
68.0
70.0
72.0
74.6
76.0
18.0
80.0
82.0
84.0
86.0

10.014726 4.093236

8.525793
7.621105
7.002441
6.547668
6.196069
5.913572
5.679032
5.478043
5.299794
5.135036
4.975240
4.814225
4.654351
4.507755
4.383449
4.28.067
4.19A021
4.123652
4.060276
4.00329)

42.0 28.71326 0.962739
440 13.12078 2.853460

5.129975
6.060729
6.925982
7.747211
8.537988
9.307947
10.065181
10.81791
11.57594
12.35288
13.16768
14,M024
14.96940
1591615
16.83795
17.71976
18.56568
19.38538
20.18825
20.98233

6.85308¢-03
1.66242¢-02
2.17523¢-02
2.52179¢-02
2.76563¢-02
2.92020e-02
3.00173¢-02
3.00869¢-02
2.93676¢-02
2.77712¢-02
2.51732¢-02
2.14448¢-02
1.65774e-02
1.10206e-02
6.16345¢-03
3.66768¢-03
3.75392¢-03
6.06924¢-03
1.05131e-02
1.68916e-02
2.49176¢-02
3.43295¢-02
4.49350e-02

43.0
45.0
47.0
49.0

16.73859
11.22238
9.164049
8.025656
51.0 7.285776
53.0 6.759251
55.0
57.0
59.0
61.0
63.0
65.0
67.0
69.0

71.0

6.361508
6.047717
5.791311
5.575073
5.386673
5.216276
5.055015
4.895021
4.733506
73.0
75.0
77.0 4.329773
79.0 4.236684
81.0 4.158494
83.0
85.0
87.0

4.578581
4.442661

4.001011
4.031121
3.976569

2068915
3.509846
4.628737
5.605420
6.499941
7.341106
8.145749
8.925045
9.687675
10.441560
11.19553
11.96100
12.75416
13.59595
14,49945
15.44380
16.38177
17.28384
18.14666
18.97820
19.78839
20.58595
21.37816

1.28650e-02
1.94656e-02
2.36409¢-02
2.65350e-02
2.85153¢-02
2.97018e-02
3.01466¢-02
2.98301e-02
2.86860¢-02
2.66050e-02
2.34563¢-02
1.91423e-02
1.38237e-02
8.38266¢-03
4.56789¢-03
3.41507¢-03
4.63919¢-03
8.03265¢-03
1.34778e-02
2.07165¢-02
2.94636e-02
3.94923¢-02
5.06404¢-02




3.950755
3.901231
3.853650
3.807183
3761164
3.715079

21.77423
22.56964
23.37347
24.19017
25.02401
25.87898

5.65988e-02
6.92314e-02
8.27627¢-02
9.71307¢-02

0.112258
0.128037
3.6%8520 26.75895 0.144322

89.0
91.0
93.0
95.0
917.0
99.0

3.925690
3.877255
3.830321
3.784153
3.738158
3.651880

2217118
22.97021
2377995
24.60469
45.44861
26.31561

6.27988¢-02
7.55885¢e-02
8.98488e-(12
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Table I1.4 The sy .lealq Lamb wave parameters

ka clc oy B 7 ka cilc oy B

65.0 5.709630 10.88427 7.561313 66.0 5907279 10.67266 6.900472
67.0 6.116464 10.454041 6.191272 68.0 6.327767 10.246286 5.421073
62.0 6.536299 10.056432 4.554775 70.0 6.722228 9.911665 3.525174
71.0 6.797864 9.944458 2.161037 72.0 6.254679 11.01138 0.693661
73.0 5.758624 12.17664 (.355892 74.0 5.498012 1295941 0.248€17
750 35.331644 13.56695 (.194698 76.0 5213098 14.07866 0.162056
77.0 5.122361 14.53213 0.140130 78.0 5.049325 14.94761 0.124354
79.0 4988286 15.33710 0.112390 80.

<

4935832 15.70801 0.102943

Q1IN AQRNNTAT 1K NAKDQ
[AETR RS N 2o R W A § VR V¢ pikty )

>
18]
ra
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4
2
<>

=
t3
cn
to
<

A»CA()CE(\ 145 A100 A Q QTINELA_ N
OTTU IO, AUTLLETY 007 i

83.0 4.811332 16.75094 8.30929¢-02 4777253 17.08233 7.813%6¢-02

o
= La
< c

85.0 4.745802 1741056 7.30876¢-02 8 4716574 17.73357 696259¢-02
87.0 4.689251 18.05307 6.5870Re-02 88.0 4.663565 18.36968 ©.23565¢-02
89.0 4.639316 18.66386 5.90374e-02 90.0 4616330 18.9960! 5.58780e-02
91.0 4.594466 19.30643 5.2849C¢-02 92.0 4.573600 19.61545 4.99315e-02
G3.0 4.553627 1992328 4.71072¢-02 94.0 4.53445% 20.23015 4.43636e-02
95.0 4516011 20.53626 4.16917e-02 96.0 4.498212 20.84181 3.90837¢-02

97.0 4.481001 21.14695 3.65346e-02 98.0 4.464319 21.45184 3.40403¢-02

99.0 4.448117 21.75661 3.15994¢-02 100.0 4.432345 22.06142 2.52110¢-02
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Table I1.5 The 53 leaky Laml wave parameters

ka cyc W oy B ka cyc (e} o By

83.0 87.25604 0.451224 4.12350e-02 84.0 43.13697 1.447286 9.23560e-02
85.0 31.51721 2.196939 0.114933 86.0 25.57552 2.862591 0.128295
87.0 21.84771 3.482111 0.137002 88.0 19.25171 4.071021 0.142974
89.0 17.32399 4.637385 0.147201 90.0 15.82827 5.186030 0.150257
91.0 14.62990 5.720140 0.152495 92.0 13.64587 6.241966 0.154148
93.0 12.82195 6.753189 0.155372 94.0 12.12103 7.255115 0.156276
95.0 1151684 7.748792 0.156940 96.0 1099016 8.235086 0.157418
97.0 10.526631 8.714724 0.157755 98.0 10.115261 9.188332 0.157981

99,0 9747490 9.656452 0.158121 1000 9416545 10.119606 (.157679




TECHNICAL REPORT DISTRIBUTION, UNCLASSIFIED CONTRACT

Defense Technical Information Center
Comeron Station
Alexandria, VA 22314

L. E. Hargrove

Physics Division, Code 1112
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

S. G. Kargl

Naval Coastal Systems Center
Physical Acoustics Branch
Code 2120

Panama City, FL. 32407

2 ane-sided copies

1 two-sided copy

1 two-sided copy

174




